

AIN SHAMS UNIVERSITY
FACULTY OF EDUCATION
DEPARTMENT OF BIOLOGICAL
SCIENCES AND GEOLOGY

CYTOLOGICAL AND PHYSIOLOGICAL COMPARATIVE STUDIES ON SOME LETTUCE VARIETIES

THESIS

SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE TEACHER PREPARATION

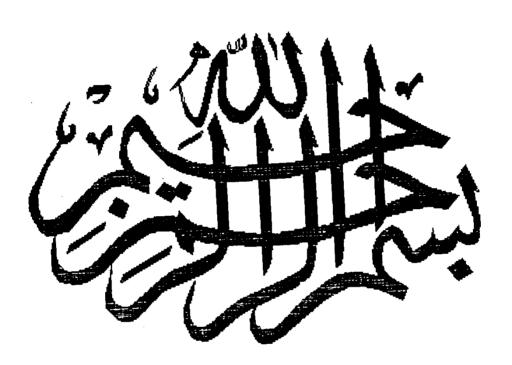
(BOTANY)

581. 1 E. A

A BY WELL-RAZIK KAMEL ALY

B.SC. & ED. (1985)

GENERAL DIPLOMA IN SCIENCE TEACHER PREPARATION (1987)
SPECIAL DIPLOMA IN SCIENCE TEACHER PREPARATION (1988)


SUPERVISOR

DR. AMIN E. DOWIDAR

PROF. OF PLANT PHYSIOLOGY

FACULTY OF EDUCATION -AIN SHAMS UNIVERSITY

1992

THIS THESIS HAS NOT BEEN PREVIOUSLY SUBMITTED FOR ANY DEGREE AT THIS OR AT ANY OTHER UNIVERSITY

E.A.K.ALY

ACKNOWLEDGMENT

ACKNOWLEDGMENT

The author wishes to express his gratitude to Dr. AMIN ERFAN DOWIDAR, Professor of Plant Physiology, for suggesting and supervising this work. The help and advice of Dr. AWATIF IBRAHIM EL-NAHAS, Assistant Professor of Plant Cytology is also unforgettable.

Thanks are also due to *Dr. ABDEL FATTAH BADR*, Professor of Plant Cytotaxonomy, Botany Department, Faculty of Science, Tanta University, for his aid during the cytological and numerical analysis studies and valuable discussions.

The author is deeply grateful to Dr. ABDEL MONEIM IBRAHIM ABOEL ATTA, Lecturer of Plant Taxonomy for his generous help in the morphological and anatomical studies and illuminating criticism.

Last but not least the author wishes to express his deep thanks to Professor Dr. AHMED F. AFIFI, Head of Biological Sciences and Geology Dept., for his continuous encouragement and generous vital help.

Sincere thanks are also offered to all other staff members of Biological Sciences and Geology Dept. for their continuous encouragement through the work .

CONTENTS

CONTENTS

INTRODUCTION 1 - 24
MATERIAL AND METHODS 25 - 43
I - Cytological Studies :-
1 - Chromosome Counts .
2 - karyological Studies .
3 - karyological Analysis .
<pre>II - Physiological Studies :-</pre>
1 - Quantitative Estimation of Total
Carbohydrates Contents .
2 - Quantitative Estimation of Total
Nitrogen .
3 - Quantitative Estimation of Lipids
Content .
4 - Quantitative Estimation of Nucleic
Acids Contents (DNA & RNA) .
5 - Extraction and Estimation of Pigment
Contents (Chl. a , Chl. b and Carotenoids) .
6 - Measuring of Respiratory Rate .
III - Morphological and Anatomical Studies .
IV - Numerical Taxonomic Analysis .
RESULTS 44 - 114
DISCUSSION 115 - 125

SUMMARI	126	-	127
REFERANCES	128	-	142
APPENDIX	143	-	156
ARABIC SUMMARY			

INTRODUCTION

INTRODUCTION

The genus Lactuca (Tourn.) L. is one of the genera of subfamily Cichorieae; which can be easily distinguished by its crisp and prominently veined leaves. Linnaeus (Willis, 1966) chose the generic name Lactuca derived from the Latin lac, or milk, because of the milk like sap exuded from cut lettuce. It belongs to the Compositae (=Asteraceae), one of the largest angiosperm families. There is no wild plant that can be definitely associated with lettuce although Lactuca serriola and some other species of the Mediterranean region appear to be very close relatives (Simpson and Conner-Ogorzaly, 1986).

In the light of cytological and genetical evidence, Lundqvist (1960), considers that L. sativa probably originated by hybridization of other species, including L. saligna L., and that L. serriola arose from the same or subsequent hybridization and now exists as a camp-following weed. L. sativa and L. serriola are interfertile and natural hybrids occur (Purseglove 1968). He reported that lettuce is a cultigen derived from L. serriola L., a prickly biennial ruderal of Europe, western Asia and northern Africa. Also, De Vries (1990) carried out crossing experiments of lettuce cultivars and species to study the degree of

relationships within Lactuca sativa and three wild relatives L. serriola, L. saligna and L. virosa. He studied the F1 hybrids obtained from crosses made in and between the four species. This study added evidence for descent of L. serriola and L. sativa. L. saligna also made part of the ancestral complex of cultivated lettuce.

Purseglove (1968) stated that the center of origin of Lactuca sativa is the Middle East. The first records of lettuce as vegetable is a long-leaved form depicted on Egyptian tombs dated 4500 B.C.Lettuce was grown by ancient Greeks and Romans. The Moors developed many types. Lettuce reached China in the 7th century A.D. Purseglove also stated that the first incontestable record of cabbage lettuce is by Fuchs in 1543. Lettuce is a comparatively recent introduction into the tropics and no truly tropical races have been evolved.

Generally lettuce is grown in countries within the cool temperate zone and within warm temperate zone at high elevations (Edmond et al , 1975) . Of the four principal lettuce types , the most popular , the crisp-heading lettuce (ice-berg is well-known variety) , have brittle , prominently veined leaves . Butter head types (Boston for example) have softer leaves and a smooth texture . Loose-leaf varieties , such as Oak leaf , do not form heads ; and cos lettuce

or romaine, forms a long, leaf shaped head.

Cos is slower to bolt than other lettuce and is therefore useful as a warm-weather crop (Simpson and Conner - Ogorzaly , 1986) .

The range of vegetative characters of the lettuce can be summarized as follows: the root system of mature plants is moderately extensive. In upland soil the tap root extends to 1.2-1.5 meter. Branches of the first order extend laterally to a distance of 15 - 20 [cm] and then downward. Branches of the second order are the most numerous. They usually fill the upper 25 - 30 [cm] of soil. The stem, during the vegetative stage, is short, usually from 10 - 15 [cm] long. Around it, the leaves arise in a rosette. They vary in size, shape and colour. During the reproductive stage, the stems elongate and branch, and each of the various branches form a terminal inflorescence (Edmond et al., 1975).

On the other hand , the general characteristic features of floral organs of the lettuce are : inflorescence is a panicle. Individual flowers are perfect , with five stamens one-celled ovary . They are usually self-pollinated . The fruit (one-seeded fruit , in which seed and fruit coats are fused) called seed , are very small ; each contains a single embryo (Edmond et al , 1975) .

Mayer and Poljakoff-Mayber (1975) , recorded that lettuce seeds (air-dry seeds) contain ; Ash 46.0 [mg/g] ; phytic acid 20.0 [mg/g] ; sucrose 30.0 [mg/g] ; glucose 2.0 [mg/g] ; Fat 370.0 [mg/g] ; total nitrogen 40.0 [mg/g] ; Protein 37.0 [mg/g] ; soluble nitrogen 1.0 [mg/g] ; ribofla vin 0.012 [mg/g] ; Ascorbic acid 0.29 [mg/g] ; Carotene 0.004 [mg/g] and total P (free and bound) 8.5 - 14 [mg/g] .

In lettuce seeds 50 per cent of total phosphorus occurs as phytin , 6 - 10 per cent as free phosphate and the remainder in other phosphorus-containing compounds such as nucleotides , sugar-phosphates (20 - 25 per cent) , phospholipids nucleoproteins and other compounds (20 - 25 per cent) .

In addition, the nucleic acids constitute an extremely important part of the phosphorus-containing compounds. The nucleic acid occur partly in their form and partly in the form of nucleoproteins. The ratio of RNA to DNA (ribonucleic acid to deoxyribonucleic acid) is approximately 10:1.

Lettuce is usually propagated by seeding directly in the soil although head-lettuce types are sometimes transplanted. Leaf lettuce is harvested about 40 days after seeding, head lettuce from 70 to 90 days (Purseglove, 1968; Tindall, 1983). Like cabbage, lettuce heads are formed by the

suppression of the terminal bud, and they will also bolt if not picked soon enough (Simpson and Conner-Orgorzaly, 1986).

Flowring lettuce is a rank-looking plant about 1 [m] tall with small yellow heads resembling those of dandelions (Simpson and Conner-Ogorzaly, 1986). All the flowers of the capitulum open at once and remain open for two hours only. During this time the unexpanded hairy stigma sweeps the pollen upwards and out of the anther column. The stigmas then fold back and the flowers are automatically self-pollinated. The flowers are visited by flies so a little out-crossing may sometimes occur (Purseglove, 1968).

Tindall , (1983), recorded the following botanical varieties of lettuce :

- war. asparagina Bailey, syn.L. angustana Vilm., L. sativa L. var. angustana Irish ex Bremer (Asparagus or Stem Lettuce, Celtuce). Mature leaves coarse and inedible; basal narrow, lanceolate, alternate, sometimes with pointed apex, non-heading young, leaves used as a cooked vegetable; mainly grown in China, from where it originated.
- _var. capitata L. (Cabbage, Butter Head or Head Lettuce)
 Compact rosettes of leaves forming a solid head; leaves
 board, almost orbicular, midrib branching into small veins
 _var. crispa L. (Leaf Lettuce, Curled Lettuce).