
Ain Shams University
Faculty of Education
Department of Biological
Sciences & Geology

Studies on some relationships between some taxa in the Asteraceae

521.87 E. A

Thesis

Submitted in Partial Fulfillment for The

Degree of Doctor of Philosophy in Science

Teacher's Preparation

(Botany)

64119

By Ehab Abdel–Razik Kamel Aly

B.Sc. & Ed. (1985)

General Diploma in Science Teacher's Preparation-Botany (1987) Special Diploma in Science Teacher's Preparation-Botany (1988) Master of Science Teacher's Preparation-Botany (1993)

1996

بنير الم الجمز الحيث

To My Mother, My Wife, Amr & Dina

Approval Sheet

Name: Ehab Abdel-Razik Kamel Aly

Title:

Studies on some relationships between some

taxa in the Asteraceae.

Supervisors

Approved

Prof. Dr. Amin E. Dowidar

Prof. Dr. Abdel-Fattah Badr

ABSTRACT

Kamel, Ehab Abdel-Razik. Studies on some relationships between some taxa in the Asteraceae. Unpublished Philosophy Doctor of Science Teacher's Preparation (Botany), Faculty of Education, Ain Shams University, Cairo, Egypt, 1996.

Chromosomal studies have been carried out on 106 species of Asteraceae representing eight tribes and 54 genera in the main two subfamilies Cichorioideae and Asteroideae, including 47 species collected from Egypt. These studies include detailed characterization of karyological features of each species. New chromosome counts for 17 species and new numbers for seven species have been recorded. Basic chromosome numbers of x = 4,5,6,7,8,9,10,11,12,13,14,15 and 17 have been encountered among the studied species. The longest chromosomes are found in tribe Anthemideae (average MCL=3.60 μ m), while the shortest chromosomes are found in tribe Cardueae (average MCL=1.81 μ m).

In addition, the systematic relationships of the 106 species based on selected 72 morphological characters have been evaluated using the taxonomy program NTsys-pc. The relationships of most of the studied species have been also evaluated based on 56 attributes derived from the SDS-PAGE profiles of storage seed proteins. Both lines of evidence produced relationships that support the tribal delimitations in the two subfamilies, but also revealed some important notations at the subtribal, generic and species levels. The revealed relationships of the studied species are discussed in the light of their cytological features and previous systematic and phylogenetic treatments.

Keywords:

Asteraceae (Compositae), Classification, Taxonomy, Systematics, Evolution, Morphology, Chromosome number, Karyotype asymmetry, Karyology, Seed protein electrophoresis, Egyptian flora.

This

Thesis has not been previously submitted for a degree at this or at any other University.

E.A.K.Aly

Acknowledgment

I wish to express my deep thanks and gratitude to Prof. Dr. Amin E. Dowidar, Professor of Plant Physiology, Biological Sciences and Seology Department, Faculty of Education, Ain Shams University for keen supervision, providing facilities, careful reading of the manuscript and continuous encouragement throughout this work.

I am greatly indebted to Prof. Dr. Abdel-Jattah Badr, Professor of Plant Senetics & Evolution and Head of Botany Department, Jaculty of Science, Janta University for suggesting the subject, keen supervision, vital help and advice during the practical work and for his assistance in the preparation of the manuscript.

I would like also to express my gratitude to the staff members of the Biological Sciences and Seology Department, Faculty of Education, Ain Shams University, namely: Dr. A.I. Aboel-Atta, Becturer of Plant Taxonomy for assistance in the morphological studies and continuous encouragement throughout the work, Dr. Hanaa H. El-Shazly Becturer of Plant Cytology for her helpful criticism and revision of cytological results, Dr. MM. Abou-El-Enain, Becturer of Plant Cytotaxonomy

for his assistance in the description and coding of the morphological characters.

Deep thanks and gratitude are due to the former Heads of Biological Sciences and Seology Department Prof. Dr. A. F. Afify and Bate Prof. Dr. M.E. Abd-Alla and for the present Head Prof. Dr. M.M. Ramadan for providing facilities to carry out the experimental studies and for continuous encouragement.

My gratitude is also due to Prof. Dr. A. Al-Nowaihi, Professor of Plant Jaxonomy, Faculty of Science, Ain Shams University for his help in identification of the species studied and for encouragement.

Special appreciation is extended to Mr. K. A. Gomaa for his assistance in photography of the gels and in using the computer. The help of Dr. M.H. Abdel–Aal in the numerical analysis on the computer is also appreciated.

The Author

CONTENTS

	Pag
•	List of Tables.
•	List of Figures.
•	Abstract.
	Chapter (1)
•	Introduction and Aim of The Work
	Chapter (2)
•	Materials and Methods:
	I. Materials23
	II. Methods
	1. Morphology
	2. Cytology31
	3. Seed protein electrophoresis35
	4. Numerical analysis
•	Results.
	Chapter (3)
•	Morphological Relationships:
	I. Characters Description and Coding41
	II. Numerical Analysis of The Morphological Characters: . 59
	i. Subfamily: Cichorioideae
	ii. Subfamily: Asteroideae
	Chapter (4)
•	Cytological Results

	Page
Chapter (5)	
Seed Protein Electrophoresis:	
I. SDS-PAGE Electropherogram of Storage Seed	
Proteins	117
i. Tris-HCl extracted proteins	117
ii. Tris-glycine extracted proteins	127
II. Numerical Analysis of Storage Seed Proteins:	143
i. Subfamily: Cichorioideae	144
ii. Subfamily: Asteroideae	149
Chapter (6)	
Discussion	157
English Summary	175
References	179
Arabic Summary	

LIST OF TABLES

		Page
Table 1-1:	The number of subtribes, genera and species assigned to the tribes of Asteraceae according to Bremer (1994)	11
Table 2-1:	The localities of 47 species collected from the Egyptian flora	24
Table 2-2:	Sources of the species studied	26-30
Table 2-3:	Chromosome type as defined by Levan et al. (1964)	33
Table 3-1:	Description of the used 72 morphological characters and their codes for numerical analysis	42-45
Table 3-2:	Data matrix of the 72 morphological characters in the numerical analysis	47-51
Table 4-1:	Summary of the cytological features of the studied species of tribe Lactuceae	76
Table 4-2:	Summary of the cytological features of the studied species of tribe Cardueae	85
Table 4-3:	Summary of the cytological features of the studied species of tribe Anthemideae	94

	Summary of the cytological features of the	Page
Table 4-4:	studied species of tribe Astereae (a) and tribe Calenduleae (b)	99
Table 4-5:	Summary of the cytological features of the studied species of tribe Heliantheae	105
Table 4-6:	Summary of the cytological features of the studied species of tribe Inuleae	112
Table 4-7:	Summary of the cytological features of the studied species of tribe Senecioneae	116
Table 5-1:	The molecular weight range of protein bands extracted in Tris-HCl buffer in the studied species of subfamily Cichorioideae	122
Table 5-2:	The molecular weight range of protein bands extracted in Tris-HCl buffer in the studied species of subfamily Asteroideae	128
Table 5-3:	The molecular weight range of protein bands extracted in Tris-glycine buffer in the studied species of subfamily Cichorioideae	133
Table 5-4:	The molecular weight range of protein bands extracted in Tris-glycine buffer in the studied species of subfamily Asteroideae	141
Table 5-5:	The molecular weight range of protein bands extracted in Tris-glycine buffer in the studied species of subfamily Asteroideae (continued)	142

LIST OF FIGURES

-		70 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Page
Fig.	1-1:		of the Asteraceae according	6
Fig.	2-1:	The distribution of localities	es in Egypt	25
Fig.	3-1:		verage taxonomic distance the species studied of	60
Fig.	3-2:	characters illustrating av	verage taxonomic distance the species studied of	63
Fig.	4-1	Karyotype of the studied sp a) Cichorium endivia c) Cichorium pumilum e) Crepis radicata g) Hieracium pilosella i) Lactuca saligna	b) Cichorium intybus	69
Fig.	4-2:	Karyotype of the studied (continued). a) Lactuca sativa c) Lactuca virosa e) Launaea cassiniana g) Launaea nudicaulis i) Launaea tenuiloba	species of tribe Lactuceae b) Lactuca serriola d) Launaea capitata f) Launaea mucronata h) Launaea resedifolia	73

				Page
Fig. 4-3:	Karyotype of the studied (continued).	species	of tribe Lactuceae	75
	a) Reichardia picroides c) Sonchus macrocarpus e) Tragopogon dubius	d) Sonch	ardia tingitana hus oleraceus permum picroides	
Fig. 4-4:	Karyotype of the studied sp a) Amberboa lippii c) Carthamus lanatus e) Centaurea aegyptiaca g) Centaurea crocodylium	b) Carti	tribe Cardueae. ina acaulis hamus tinctorius nurea alexandrina	79
Fig. 4-5:	Karyotype of the studied (continued). a) Centaurea calcitrapa c) Centaurea montana e) Cirsium arvense g) Echinops ritro	b) Cent	of tribe Cardueae aurea cyanus taurea moschata us benedictus	82
Fig. 4-6:	Karyotype of the studied (continued). a) Echinops sphaerocepho c) Jurinea mollis d) Onopordum alexandriu f) Staehelina dubia	ulus b)		: 84
Fig. 4-7:	Karyotype of the studied of Anthemideae. a) Achillea ageratum c) Achillea fragrantissimo e) Achillea ptarmica g) Anacyclus pyrethrum	b) Ach a d) Ach	of tribe nillea clavenae nillea nobilis illea santolina	89