STUDIES ON ACETYLENIC COMPOUNDS

A THESIS

SUBMITTED BY

EDWAR AMIN GHALI

B. Sc. , M. Sc.

FOR THE DEGREE OF

Ph. D.

FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

1979

STUDIES ON ACETYLENIC COMPOUNDS

	Thesis	s idvisors	Approved
Dr.	M.N.	Basyouni .	M. Bazzanie
		Omar	

Prof. S.w. Tobia

Head of Chemistry Department

ACKNOVLEDGEMENT

The author wishes to express his gratitude to Drs.

M.N. Basyouni and M.T. Omar, Assistant Professors of

Organic Chemistry, Faculty of Science, Ain Shams "niversity

for suggesting the problem, supervision, advice, criticism
and invaluable support.

COTENTS

Pa	5
Symonesis 1	
Introduction	
General Introduction 2)
Table 1 5	į
Table 2 6	, •
Table 3 8	ţ
Nucleophilic additions of sulphur compounds	
to acetylenes	į
Free-radical additions of organic sulphur compounds to acetylenes48	3
Discussion of Original Work	
Aim of the present investigation53	j
Scheme 1	
Scheme 2	
Discussion of results55	j
1) Synthesis of aroylphenylacetylenes and methyl arylpropiolates55	ί.
2) Nucleophilic additions to aroylphenylacetylenes and methyl arylpropiolates56	
a- Addition of methyl thioglycollate to aroylphenylacetylenes and methyl	
phenylpropiolates	,
b- Addition of S-benzylisothiourea hydrochloride and S-methylisothiourea sulphate to aroylphenylacetylenes and methylphenylpropiolate68	3
c- Addition of imidazolidine-thione and thiourea to aroylphenylacetylenes and methyl arylpropiolates	

		Page
d-	Addition of isothiocyanic acid to aroylphenylacetylenes	. 84
e -	Addition of ammonium dithio- carbamate and ammonium phenyl- dithiocarbamate to aroylphenyl- acetylenes	. 86
f-	Addition of toluene-3,4-dithiol to aroylphenylacetylenes and methyl aroylpropiolates	. 91
Table	4	95
	5	
	es 1-17	* *
Experiment	tal	. 50
	the Main New Compounds	
	Known compounds prepared by New methods	
	APHY	
rabio Su		

and the second contraction of the contraction of th

Symopsis

Piperidine-catalysed addition of methyl thioglycollate to benzoyl- and p-chlorobenzoyl-phenylacetylenes (XXXVI2 * c) and methyl phenylpropiolate (XXXIII2) in ethanol gave (3)-1-ary1-3-(1'-carbomethoxymethylthio)-3-pheny1-2-propen-1ones (IVI_a & \underline{c}) and methyl (2)-3-(1'-carbomethoxymethylthio) cinnamate (LIX), respectively. However, p-anisoylphenylacetylene (XXXVIb) gave a mixture of (2)- (IVIb) and its (E)isomer (LVII) in the ratio of 4:1. The (2)-isomers were formed by the usual trans- nucleophilic addition, whereas the (E)- (IVII) was formed by a competing ois-addition and not by the post-isomerisation of the (7)- (IVIb), since it was independently proved that (2)- (LVI \underline{b}) was configurationally stable under the experimental conditions used for the addition. Formation of the (E)-isomer in case of XXXVIb was interpreted in terms of the activating group effect. When dry benzene was used as a solvent in the above addition to xxxvIb the ratio of (1)-to (E)- was completely reversed (1:4.5) and this was retionalised on the basis of the solvent effect.

S-benzylisothicures hydrochloride reacted with aroviphenylacetylenes (XXXVIa,b) and methyl phenylpropiolate (XXXIIIa) in the presence of sodium acetate to give (7)-learyl-3-benzylthio-2-propen-leones (IXa&b) and methyl (T)-a-benzylthiocinnamate (IXa), respectively. On the other hand, XXXVIa gave 2-benzylthio-4-p-chlorophenyl-6-phenylpyrimidine

LXI. Similarly, XXXIIIa gave with S-methylisothiourea sulphate, 2-methylthio-4(6)-oxo-6(4)-phenylpyrimidine (LXII), whereas XXXVIa gave (7)-1,3-diphenyl-3-methylthio-2-propen-1-one (LXC).

يراديني بيانيان الأراداء والأرينية بياك الأنباقيان المناف فيالفا فلاطاف الماكية الماكا المعالم المعاف المعالية

Imidazolidine thione and XXXVIa gave a mixture of (7,7)-(LIa) and (E,7)-(LIIa)-3,3'-thiodi(1,3-diphenyl-prop-2-ene-1-one), whereas XXXVIb & c gave only the corresponding (E,7)-isomers. On the other hand, XXXIIIb & c gave 2,3-dihydro-6-p-methoxyphenylimidazo [2,1-b]-thiazine-4-one (LXVI) and 2,3-dihydro-6-imidazolidinethio-6-p-chlorophenylimidazo-[2,1-b]-thiazine-4-one (LXVII), respectively.

Thioures and XXXIIIa-c gave the corresponding 6-srvl-2,3-dihydro-2-imino-1,3-thiszine-4-ones (LXV2-c).

Isothiocyanic acid and XXXVIa-c gave the corresponding l-aryl-3-phenyl-3-isothiocyano-2-propeni-ones (LXVIIIa-c), which failed to react with amines.

Ammonium dithiocarbamate reacted with p-chlorobenzoviphenvlacetylene (XXXVIc) to give only the (0,0)-isomers (142),
whereas armonium phenyldithiocarbamate gave a mixture of LIc
and (E,0)-isomer LIIc. p-Aniscylphenvlacetylene mave with
the latter reacent only (0,0)-3,3'-thiodi(l-p-methoxyphenyl3-phenylprop-2-ene-l-one) (LIb). Phenyl thiourea was isolated
from the reactions involving ammonium phenyldithiocarbamate.

Piperidine-catalysed addition of toluene-3,4-dithiol

المستقيل والمرابع والمراج والمراج والمراج والمراجع والمستقيل والمراجع والمراجع والمراجع والمراجع والمستعمر والمراجع والم

to XXXVIa gave 2-(phenylcarbonylmethyl)-5-methyl-2-phenyl-benzo-1,3-dithiole (LXXVIa). Similar addition of toluene-3,4-dithiol (Zn salt) in an acetic acid solution to the ketones XXXVIb & c and the esters XXXIIIa & c gave LXXVIb,c and 2-carbomethoxymethyl-5-methyl-2-arylbenzo-1,3-dithiole (LXXVIIa & b), respectively.

The above reactions are summarised in schemes 1 and 2.

All the new compounds were analytically pure and their structures and/or configurational assignments were bas-d on IR, UV and NMR spectroscopy.

Introduction

Since this thesis describes the nucleophilic additions of organic sulphur compounds to acetylenic esters and retones, the following section includes the pertinent literature on such addition reactions to acetylenes. It was, however, found convenient to include, whenever necessary, additions of the same nucleophiles to ethylenic-double bond containing - compounds.

General Introduction :

The interaction of thiols with unsaturated hydrocarbons was first reported by Posner (1) who treated thiophenol and benzyl-thiol with a variety of olefins at room temperature in the presence of acetic and sulphuric acids. With simple olefins, conjugated and non-conjugated, addition of fragments of the thiol produced by scission of the S-H bond proceeded readily and, at an unsymmetrically substituted double bonds, in opposition (1) to Markownikoff's rule, e.g.

From an investigation of the reaction between thiophenol or ethanethical with propylene, isobutylene, trimethylethylene and isopropylethylene at 100-150°C, Ipatieff and others (2,3) found that although addition products "abnormal" with respect to Markewnikoff's rule were formed in the absence of catalysts, yet the presence of Sulphuric acid, contrary to Posner's findings, reversed the orientation of addition and led to "normal products". Contemporaneously Jones et al (4) and Kharasch et al (5) showed that traces of peroxides, either as present normally in unsaturated hydrocarbons or as an added ascaridole, strongly catalyse

the "abnormal" addition and that quinol effectively impedes the reaction. The fact that the "abnormal" addition of thiols to olefins is catalysed by peroxides, oxygen or sonlight and is inhibited by the addition of quinol or piperidine led Mayo and "alling(6) to propose a free-radical chain reaction mechanism for such an addition

RSH +
$$O_2$$
 (or neroxide) \longrightarrow RS' + HO_2
RS' + R'CH=CH₂ \longrightarrow R'CHCH₂SR \xrightarrow{RSH} R'CH₂CH₂SR + RS'

The addition of thiol acids, best exemplified by thiolacetic acid, to isobutylene, isopropylethylene and trimethylethylene at various temperatures, were studied by Ipatieff and Friedmann (3). They also found that the direction of addition, in this case, being controlly to varbownikoffic role.

ith κ , β -unsaturated esters and betores, the addition of thiols takes place by an ionic mechanism (7), since the addition is accelerated by the addition of basic catalysts. Among the basic datalysts used were sodiom altoxides (a,a) piperidine (10) and notassium carbonate (11). In this case the sulphor atom becomes attached to the electron deficient B-carbon atom e.g.

وي المراجع ع**دد المراجع ا**

$$RCH = CH^{-1}C + R^{2}SH \longrightarrow RCH(SR^{2}) CH_{2}CO_{2}R^{1}$$

These additions are, therefore, contrary to Markownikoff's rule.

From the above results it was concluded (6) that a thiol, like a halogen acid, when added to an unsymmetrically substituted ethylenic bond, can yield either of two troducts.

$$R-CH=CH_2+R^1SH\longrightarrow RCH_2CH_2SR^1 \quad (abnormal* addition)$$

$$R-CH=CH_2+R^1SH\longrightarrow RCH(CH_3)SR^1 \quad (normal** addition)$$

The abnormal addition of thiols, i.e. the salphar becomes attached to the parbon atom carrying the greater number of hydrogen atoms, has been observed in the case of addition to alkene hydrocarbons and is the one almmor's observed especially when no catalysts (e.g. salpharic acid) for the normal addition are employed. The abnormal addition, as has been mentioned previously, are patalysed to here exides, exygen or light.

^{*} Contrary to Markownikoff's rule.

^{##} In accordance with Marbouniboff's rale.

and the control of th

Table 1
Normal additions of thiols to albenes

网络对抗自动自动性统治自动性的现代性 化二氢合物 医对抗性性致病 计特别证据 网络拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉克斯拉拉斯拉拉斯拉拉斯拉拉斯拉拉斯拉										
Al ^k ene	Thiols	Addition product	Evidence of mechanism	Ref						
CH ₃ CH = CH ₂	с ₂ н ₅ sн (=)	i-03 ⁴ 7 ⁵⁰ 2 ⁴ 5 (82 ⁴) r-03 ⁴ 7 ⁵⁰ 2 ⁴ 5 (8 ⁴)	Sulpher as catalyst +: no reaction in absence of sulpher	(4) .						
1-Octene		C5F13CHSC2H5(50M)	sulphur as catalyst +	(1)						
CH3CH=CH2	С ₆ Н ₅ SH (b)	i-03 ⁴ 750 ₆ 45(ca 35%)	sulphur as catalyst	(4)						
.10H≈0H 2	C ₁₂ H ₂₅ SH(b)	Mixture	cotalyst +	(:)						
(04 ₃) ₂ 0=04 ₂			Michel, cobalt or iron sulphide as catalyst	(23)						
		t-04H ⁶ 80 ⁶ 4 ² (701)	The sulphuric soid as solvent erd catalyst +	(2)						
(19 ₃) ₂ 0=0908 ₃	, ਹ _{ੁੰ} ਧ _ੁ SH (a) ਵਸ਼ਵਬਰਤਾਰਕਰਵ	t-0 ₅ 4 ₁ \$0 ₆ 4 ₅ (60 ⁷)	20 solvenio scid in scetic scid as solvent and catalyst +	10°						

⁽a) = reaction at room temperature.

⁽b) = reaction for 10 h in sealed vessel at 18000 in absence of solvent.

^{(2) =} reaction under pressure at 35-20000 (Patent claim).

^{(+) =} A different product obtained without this catalyst.