AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

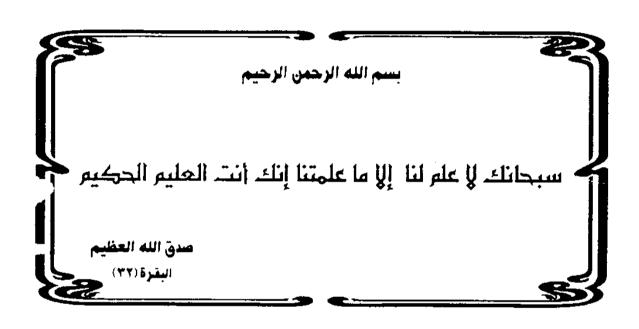
APPLICATION OF LASER TECHNIQUE IN THE MEASUREMENTS

by

Magdy Ibrahim Mohamed Ibrahim, B.Sc. (Eng.)

A Thesis

submitted in partial fulfillment for the requirements of the degree of Master of Science Department of Design and Production


Supervised by

Prof. Dr. Monir M. Koura Prof. of Production Eng., Faculty of Engineering, Ain Shams University

Dr. Ahmad Ali M. El-Sayed Associate Professor, Force Calibration and Testing of Materials Lab., NIS.

Dr. Aly El-Sayed Abo-El-Ezz Associate Professor, Force Calibration and Testing of Materials Lab., NIS.

1993

EXAMINERS COMMITTEE

Signature

- 1- Prof. Dr. Ahmed Salem El-Sabagh

 Professor, Faculty of Engineering,

 Ain Shams University
- 2- Prof. Dr. Monir M. Koura

 Prof. of Production Eng., Faculty

 of Engineering, Ain Shams University
- 3- Dr. Hany Abd El-Hakeem

 Head of Force Calibration and Testing

 of Materials Lab., NIS.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Mechanical Engineering.

This work, included in the thesis, was carried out by the author in the National Institute for standards from Oct. 1988 to Feb. 1993.

No part of this thesis has been submitted for degree or qualification at any other university or institute.

Date: 17/2/1993

Name: Magdy Ibrahim M. Ibrahim

Signature: Magdy Abrahim

ACKNOWLEDGMENT

This study was fully sponsored by the National Institute for Standards (NIS); specifically by the Force Calibration and Testing of Materials Laboratory (FCTML).

The author wishes to express his sincere thanks to Prof. Dr. Monir Koura, Head of Design and Production Department, Ain-Shams University, for his kind encouragement throughout this work.

The author acknowledges the role of Dr. Ahmad A. El-Sayed in formulating the point of research, supervising the work and guiding the candidate throughout the course of this investigation.

Special thanks are due to Ass. Prof. Dr. Aly El-Sayed Abo-El-Ezz for suggesting the point, guidance, valuable suggestions and supervising this work.

The author would also like to express his great appreciation and gratitude to the Head and all staff members of the Force Calibration and Testing of Materials Lab. of NIS for the provision of the Lab. facilities and their continuous help.

Sincere gratitude and acknowledgment are due to all who gave hands in the execution of this research.

į

ABSTRACT

The shadow optical method (caustic) is a method suitable for stress analysis at stress concentrated areas. The principle of this method was firstly proposed in 1964. Since this time it has been proved that the shadow optical method is one of the most simple experimental optical methods.

In the present work the method of caustics in the case of transmitted light was introduced on Poly (methyl methacrylate), PMMA, specimens. Experiments were carried out to verify the theory of caustics with three cases of stress risers, namely sharp crack, v-notch and close proximity to drilled holes, taking into account all involved parameters and their influence on the accuracy of the method. The involved parameters are those included in the equations of caustics to determine the stress concentrated state. These parameters are: the radius of the initial curve of the caustic (r_0) , the distance between the point light source and the specimen (Z_0) and the thickness of the specimen (d).

A comparison between the stress intensification values calculated by the method of caustics and calculated by the fracture mechanics equations were made at various caustic parameters values. Limits and limitations within which the shadow optical method may be used were set to get the best accuracy.

TABLE OF CONTENTS

			Page
ACKNOWLE	DGMENT		i
ABSTRACT			
TABLE OF CONTENTS			iii
LIST OF MAIN SYMBOLS			
CHAPTER	1	INTRODUCTION AND THE AIM OF THE WORK	1
	1.1	Introduction	2
	1.2	The aim of the work	4
CHAPTER	2	LITERATURE SURVEY	5
	2.1	Introduction	6
	2.2	Physical principle and the basic	
		equations of caustic	6
	2.2.1	The basis of caustic method	6
	2.2.2	Physical principle	7
	2.2.3	The basic equations of caustics	9
	2.2.3.1	General relations	10
	2.2.3.2	Mapping equations of caustics for	
		specific problems	12
	2.3	Caustic applications	20

	2.4	Other optical experimental methods for	
		stress determination	28
	2.4.1	Photoelasticity	28
	2.4.2	Laser holography	29
	2.5	Caustic method versus other optical methods	29
	2.6	Sources of error and error analysis	32
CHAPTER	3	EXPERIMENTAL TECHNIQUE AND ARRANGEMENTS	35
	3.1	Introduction	36
	3.2	Material selection	36
	3.3	Material properties	36
	3.3.1	Mechanical properties	37
	3.3.2	Optical properties	39
	3.4	Specimen preparation	43
	3.4.1	Cracked specimens	43
	3.4.2	V-notched specimens	45
	3.4.3	Drilled specimens	45
	3.5	Equipment	47
	3.5.1	Optical set-up	47
	3.5.2	Loading frame and loading measuring device	48
	3.5.3	Impact notcher	51
	3.6	Experimental design and analysis methodology	5 7

CHAPTER	4	RESULTS AND DISCUSSION	59
	4.1	Introduction	60
	4.2	The case of sharp crack	61
	4.2.1	The effect of the improved equation	65
	4.2.2	The influence of the size of	
		the initial curve, ro	67
	4.2.3	The influence of the distance between the	
		point light source and the specimen, z_i	70
	4.2.4	The influence of the distance between the	
		specimen and the image screen, $\mathbf{Z}_{\mathbf{O}}$	73
	4.2.5	The influence of the specimen thickness, d	75
	4.3	The case of V-notch	80
	4.3.1	The influence of the size of	
		the initial curve, ro	84
	4.3.2	The influence of the distance between the	
		point light source and the specimen, $\mathbf{Z}_{\hat{1}}$	87
	4.3.3	The influence of the distance between the	
		specimen and the image screen, $\mathbf{Z}_{\mathbf{O}}$	89
	4.3.4	The influence of the specimen thickness, d	91
	4.4	The case of hole	93
	4.4.1	The influence of the size of	
		the initial curve, ro	97
	4.4.2	The influence of the distance between the	
		point light source and the specimen 7.	۵۵

	4.4.3	The influence of the distance between the	
		specimen and the image screen, Z_{o}	101
	4.4.4	The influence of the specimen thickness, d	103
CHAPTER	5	CONCLUSION	105
		Conclusion	106
APPENDICES			109
APPENDI	K 1		110
APPENDI	X 2		112
APPENDI	Х 3		141
REFERENC	CES		143

LIST OF MAIN SYMBOLS

crack length (mm) a stress-optical constant (mm²/N) C D caustic diameter (mm) D_1 longitudinal caustic diameter (mm) transverse caustic diameter D_{+} ď specimen thickness Young's modulus (N/mm²) Ε F applied force (N) \mathbf{K}_{T} stress intensity factor, mode I (opening mode) $(N/mm^{1.5})$ $K_{\mathrm{I}}\left(\mathrm{C}\right)$ stress intensity factor obtained by the caustic method $(N/mm^{1.5})$ $K_{\text{I}}(F)$ stress intensity factor obtained by the linear fracture mechanics theory (N/mm^{1.5}) critical stress intensity factor (N/mm^{1.5}) K_{TC} magnification ratio $(m=Z_i+Z_o/Z_i)$ m subscript and exponent used in the complex potential n function $\emptyset(z)$ and $\Psi(z)$ R hole radius (mm) polar radius of points on specimen (mm) r radius of the initial caustic curve (mm) r_{o} tensile stress (N/mm²) $\mathbf{x}^{'},\mathbf{y}^{'}$ cartesian co-ordinates of points on screen

- z complex expression for a point on specimen
- Z_{O} distance between specimen plane and image plane (mm)

Greek symbols

- α * stress-optical coefficient (mm/N)
- 7 eigen value
- λ singularity order
- λ wave length (mm)
- p notch radius (mm)
- 6 applied stress (N/mm²)
- Ø(z) complex potential function
- polar angle of points on specimen (deg.)
- ψ apex angle (deg.)
- $\Psi(z)$ complex potential function

CHAPTER 1

INTRODUCTION AND THE AIM OF THE WORK

1.1 Introduction

In the development of the basic stress relations it is assumed that cross sections remain constant and that there are no irregularities. However, most of mechanical parts do have holes, grooves, notches, or other kinds of discontinuities present which are called stress risers. Such stress risers alter the stress distribution so that the basic stress relations no longer describe the stress state. In this case the actual stress distribution is not uniform and the maximum stress may be multiple times as large as the uniform stress. Since the occurrence of failure by fast fracture is necessarily associated with the presence of high local stresses (stress concentration) near stress risers, any realistic measurement of such stresses becomes very important to avoid a catastrophic failure in mechanical parts.

Since the danger of the stress concentration on the mechanical parts has been realized, several analytical methods were established to analyze the stress intensification very near to the stress risers. These analytical methods are classified into theoretical solutions presented by the science of fracture mechanics and experimental solutions such as Photoelasticity, Laser holography, X-Ray diffraction and the Shadow Optical method thereafter referred to as the Caustic method.