10.114 14

THE INTERACTION EFFECTS OF SALTY WATER AND FERTILIZATION
ON SOIL PHYSICAL AND CHEMICAL PROPERTIES, YIELDS AND
WATER CONSUMPTIVE USE OF PLANTS GROWN IN DIFFERENT
EGYPTIAN SOILS

Вy

AMIR SHOKRY ABD- EL- NOUR

631.43 A S

A thesis submitted in partial fulfillment

οf

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science
(Soil Science)

Department of Soils Faculty of Agriculture Ain Shams University 2831)

1989

Approval Sheet

THE INTERACTION EFFECTS OF SALTY WATER AND FERTILIZATION ON SOIL PHYSICAL AND CHEMICAL PROPERTIES, YIELDS AND WATER CONSUMPTIVE USE OF PLANTS GROWN IN DIFFERENT EGYPTIAN SOILS

By

AMIR SHOKRY ABD- EL- NOUR

(Soil Science), Assiut University, 1970 B.Sc. Agr. M.Sc. Agr. (Soil Science), Ain Shams University, 1981

This thesis for Ph.D. Degree has been approved by:

Prof. Dr. M.E. Shawky - M. Esan Shawky - ...

Prof. Dr. M. Talha Prof. of Soil Sci. Fac. Agr. Ain Shams Univ.

Prof. Dr. M.A. Aziz ---- 1/14 Prof. of Soil Sci. Fac. Agr. Ain Shams Univ.

Date of examination: 16 / 4 / 1989

THE INTERACTION LEFFECTS OF SALTY WATER AND FERTILIZATION ON SOIL PHYSICAL AND CHEMICAL PROPERTIES, YIELDS AND WATER CONSUMPTIVE USE OF PLANTS GROWN IN DIFFERENT EGYPTIAN SOILS

By

AMIR SHOKRY ABD-EL-NOUR

B.Sc. Agr. (Soil Science), Assiut University, 1970 M.Sc. Agr. (Soil Science), Ain Shams University, 1981

Prof. of Soil Sei.

A pot experiment was conducted to study the conducted of saline innigation acter as well as N- fert...zat.

Of some physical and control properties of dray, dark for a dray, dark for a subject to the sality plant. The original results can be sality as follows:

A- Soir physics, properties, .

- 1- The postent of caco, in calcareous somewas electry decreased by increasing the values of irrigation water saining. SAR and Car Mg ratio.
- 2- The use of saline irrigation water having a coff both No and hig rens relatively increased soil back density particularly at law sait concentration (1500 ppn). On the other hand, the high sait concentration associated a things

or the values of both SAR and Ca: Mg ratio. This behaviour was more pronounced in the second season. While, increasing the level of N-fertilization slightly increased water consumptive use in the second season.

The highest value of WUE was obtained for the combination of SAR 7, Ca: Mg (1: 1), salinity level of 1500 ppm, and N_3 level (80 kg N/fed.), except in the case of loamy soil.

2- Salinity level of irrigation water was the main factor affecting water use efficiency for grain production and the effect of either SAR values or Ca: Mg ratios was negligible.

D- Plant growth and grain yield:

A highly negative and significant relationship was existed between each of salinity level, SAR value, Co i mg ratio and dry matter yield of barley plant particularly in the second season. In addition, the irrigation with saline water associated with high level of N-fertilization increased the dry matter yield as compared with the low level ones and irrigated with the same saline solutions. Similar results were obtained for both grain yield and seed index of tarley plant in the two seasons.

ACKNOWLEDGEMENT

The author wishes to express his deep gratitude and thanks to Prof. Dr. S.Y. METWALLY and Prof. Dr. M.A. AZIZ, Soils Department, Faculty of Agriculture, Ain Shams University and Senior Researcher Dr. A.M. EL-SWEEDY, Soils and Water Research Institute, Agr. Res. Centre, Ministry of Agr. for their supervision, valuable suggestions, deep interest, continuous help and constructive criticism throughout the coarse of research and writing the thesis.

Thanks are also due to Assoc. Professors Dr. M.A.

Mostafa and Dr. M.A. El- Toni and Lecturer Dr. E.M. Khaled,
Soils Department, Faculty of Agriculture, Ain Shams University and Senior Researcher Dr. S.E. HEGGY, Soils and water
Research institute Agr. Res. Centre, Ministry of Agr.

for their valuable help through the whole stages of the investigation and deep interest in this study.

Sincere thanks are also, forwarded to all staff members of Soil Physics and Chemistry Department in the
Soils and Water Research Institute and Bahtim Agricultural
Research Station for providing facilities to continue this
work.

CONTENTS

		- BaRe
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
	2.1. The effect of irrigation water quality on some	
	soil physical properties	3
	2.2. The effect of irrigation water quality on some	
	soil chemical properties	13
	2.3. The effect of different saline irrigation	
	waters and N-fertilization on water consumptive	
	use	20
	2.4. The effect of different saline irrigation	
	waters on plant growth and yields	41
		21
	2.5. The effect of N-fertilization on plant growth	
	and dry matter yield	సేచే
	2.6. The effect of the interaction between soil for-	
	tility and water solinity on plant growth and yield	3 .
3.		3.
э.	MATERIALS AND METHODS	1 Ú
	3.1. Experimental design	40
	3.1.1. Plantation	46
	3.1.2. Fertilization treatments	40
	3.1.3. Irrigation	47
	3.1.4. Saline irrigation water treatments	47
	3.1.5. Preparation of the salam irrigation	
	waters	46
	3.1.6. Irrigation process	~2 J
	3.2. Methods of determinations	49
	3.2.1. Soil physical properties	راي.
	3.2.2. Soil chemical properties	J-3
	3.2.3. Water consumptive use and water use	
	efficiency	55
	3.3. Statistical analysis	55

		Page
4.	RESULTS AND DISCUSSIONS	ەد
	4.1. The effect of irrigation water quality on some	
	soil physical properties	် ဗ
	4.1.1. Calcium carbonate content in calca-	
	reous soils	56
	4.1.2. Soil bulk density	56
	4.1.3. Total soil porosity	63
	4.1.4. Soil hydraulic conductivity (SHC)	66
	4.1.5. Dry stable aggregates (DSA)	69
	4.1.6. Water stable aggregates (WSA)	76
-	4.2. The effect of irrigation water quality on some	
	soil chemical properties	81
	4.2.1. Electrical conductivity	82
	4.2.2. Soil reaction (PH)	84
	4.2.3. Soluble anions	გი
	4.2.4. Soluble cations	92
	4.2.5. Total mitrogen content	មួង
	4.2.6. Available phosphorus	100
	4.3. The effect of different saline irrigation	
	waters and N-fertilization on water consump-	
	tive use and water use efficiency	103
	4.3.1. Water consumptive use	105
	4.3.2. Water use efficiency	ιúυ
	4.4. The effect of different saline irrigation	
	waters and N-fertilization on the growth and	
	grain yield of barley	iis
	4.4.1. Plant growth	113
	4.4.2. Grain yield and seed index	116
5.	SUMMARY AND CONCLUSIONS	144
6.	REFERENCES	1 41 41
	ARABIC SUMMARY.	1១្គ

List of Tables

No.		Pago
1	The main physical and chemical properties of the	
	investigated soil samples	44
2	Scheme of the used solutions	50
3	Composition of the different solutions prepared	
	to represent the desirable salinity levels	51
4	Mean values of some physical properties of the	
	studied soils as affected by irrigation water	
	quality	ล์โ
5	The effect of interactions between different	
	factors on some physical properties of the	
	studied soils	วัช
6	Mean values of dry stable aggregates, % as	
	affected by different treatments	71
7	Dry seleving stable aggregates distribution,	
	% for the investigated soils as affected by the	
	interaction among different treatments	75
8	Mean values of water stable aggregates,% as	
	affected by different treatments	77
y	Water stable aggregates, % for the investigated	
	soils as affected by the interaction among dif-	
	ferent treatments	გს
l ü	Mean values of some chemical properties of the	
	studied soils as affected by irrigation water	
	quality	ხმ
1	The effect of the interaction between different	
	factors on electrical conductivity and pH of the	
	investigated soils	85

No.		Page
12	The effect of the interactions between diffe-	1050
	rent factors on soluble anions (meq/L) of the	
	investigated soils	87
		0.
13	The effect of the interactions between diffe-	
	rent factors on soluble cations (meq/L) of the	
	investigated soils	93
14	The effect of the interaction between different	
	factors on total nitrogen and available-P in the	
	studied soils	101
		101
15	Mean values of the amounts of water consumptive	
	use (cm cm2) for barley plants as affected	
	by different treatments	104
16	Amount of water consumptive use (cm ³ · cm ⁻²) for	
	barley plants as affected by the interaction	
	among different treatments	108
17	Mean values of water use efficiency of barley	
	plant (L/g grain) as affected by different	
	treatments	110
18	The mean values of dry matter yield, grain yield	
	and seed index (g/pot) as affected by different	
	treatments	114
1.0		117
19	The effect of interaction between different treat-	
	ments on dry matter yield of barley plant (exp-	
	ressed as g/pot)	119
20	The effect of interaction between different treat-	
	ments on grain yield of barley plants (expressed	
	as g/pot)	
2 1		130
- 1	The effect of interaction between different treat-	
	ments on seed index value of barley plants (weight of 1000 grains in grams)	
	grains in grams)	(26

1

List of Figures

No.	_	Page
1	The effect of different studied factors on water	
	consumptive use for barley plant grown on diffe-	
	rent soils of Egypt	105
2	The effect of different studied factors on water	
	use efficiency for barley plant grown on diffe-	
	rent soils of Egypt	111
3	The effect of N-fertilization and constituents of	
	different saline irrigation solution on total dry	
	matter yield of barley plant (Mean values)	115
4	The interaction effects among different consti-	
	tuents of saline solution on total dry matter	
	yield of barley plant	124
5	The interaction effects among different consti-	
	tuents of saline solution and N-fertilization on	
	total dry matter yield of barley plant (Inter.	
	between R x S x N)	125
6	The interaction effects among different consti-	
	tuents of saline solution and N-fertilization on	
	total dry matter yield of barley plant (Inter.	
	between. SAR x S x N)	126
7	The effect of N-fertilization and constituents of	
	different saline irrigation solution on grain	
	yield of barley plant (Mean values)	127

<u>No.</u>		Page
8	The interaction effects among different constituents	<u></u>
	of saline solution on grain yield of burley plant	135
9	The interaction effects among different constituents	
	of saline solution and N-fertilization on grain	
	yield of barley plant (Inter. between Rx Sx N)	136
i 0	The interaction effects among different constituents	
	of saline solution and N-fertilization on grain	
	yield of barley plant (Inter. between SAR x S x N)	.37

1- INTRODUCTION

Irrigation is extremely important in and parts of the world; with the increasing demands for crop production and also for nonagricultural uses of water, more efficient means of irrigation are needed.

Increasing production means that more land must be brought into cultivation by proper land development practices or improving farming techniques.

Besides, changes in agricultural water management in response to rising production costs has a potential for changing both quality and quantity of any water remaining after use.

standards has created new water quality management patterns. On the other side, the accumulation of soluble saits in the soil is a major problem in irrigated arid regions. Salts are concentrated in the soil as water is removed from it by evapotranspiration. This concentrated saits can negatively affects seed germination and plant growth. The reverse response may be caused by the limited availability of water due to the high osmotic potential of the soil solution and also to the unsuitable physical and chemical conditions of the soil due to high amounts of exchangeable sodium.

Another problem related to salinity in soils is the quality of water that drains out of the soil profile. Water that moves through the soil may be creat a problem of salinity in the irrigation return flow water. This problem is aggravated because it influences the water quality for irrigation and other uses downstream. Therefore, good water management is needed to control soil sail-nity in order to obtain optimum crop yield and, at the same time, to minimize the effect of salinity and alkalinity hazard on soil and plant growth to the least possible extent.

Under local conditions, shortage in the available water resources for agricultural purposes in new cultivated and reclaimed lands is an important agriculture problem in Egypt. To meet the requirements of agricultural expansion programme, series of projects were under-taken through the utilization of drainage and underground water which wicely varies in their solubility for irrigation.

The present research is a trial to obtained vital answers to the important question; to any extent the interaction between salty irrigation water and fertilization could be sensible upon some physical and chemical properties of soil, crop yield and water consumptive use in three different types of Egyptian soils?

2. REVIEW OF LITERATURE

Review concerned with this subject points out that the effect of applying saline irrigation water on soil properties depends on the characteristics of either applied water or irrigated soil.

Previous investigations showed that using saline water in irrigation practices is not easy to be tried, it affects both the soil properties and plant growth and be affected by the environmental conditions. When such saline water is used for irrigation it may increase soil salinity and causes plant growth inhibition.

In general, the effect of saline water usage could be illustrated under the following subheadings:

2.1. The effect of irrigation water quality on some soil physical properties:

2.1.1. The effect of sait concentration :

Many investigators directed attention to the important effect of saline irrigation water on soil permeability.

Zein-El-Abedine et al. (1968) found that the increase of salt concentration in irrigation water was associated with an increase in the coefficient of soil permeability. On the other hand, Servant (1971) concluded that a marked decrease in soil permeability was observed by irrigation with sodium solutions.