RATE OF HYDROLYSIS OF SUCROSE WITH SOME ORGANIC ACIDS

Ву

BARAKAT SAAD RAGHEB EL-TAHAWI B.Sc. (Agric.) 1956 M.Sc. (Agric. Chem.) 1963

547.7819 B.S.


Dissertation Submitted In Partial Fulfillment of the Requirements

For The Degree Of

Ph.D. (Agric. Chem.)

Faculty of Agriculture,
Ain Shams University

1971

RATE OF HYDROLYSIS OF SUCROSE JITH SOJE ORGANIC ACIDS

This Thesis has been approved by:

Maken 12 yek - S. T. My & Town

Committee in Charge

Date: 2 / 2 /1971.

A CKNOWLEDGEMENT

The writer wishes to express his deepest gratitude to Professor Dr. Fathy 1. Abd-Elhafiz for his supervision, kind help, valuable suggestions and encouragement during the course of this thesis.

The writer wishes also to acknowledge Dr. Ahmed Said Hamed, Assistant Professor of Biochemistry for his supervision and help during this investigation.

CONTENTS

		Page
I-	INTRODUCTION	1
II-	REVIEW OF LITERATURE:	7
	(1) Composition of cane fuice and its influence on rotation	7
	(2) Inversion and acidic constituents of sugar cane	10
	(3) Catalysts and sucrose inversion	16
	(4) Enzyme conditions	19
	(5) Mechanism of inversion process	23
	(6) Kinetic studies on sucrose inversion	31
	(a) Inorganic acids	31
	(b) Organic acids	36
	(c) Enzyme invertase	38
	(d) Variation of the velocity constant	40
	(7) Heat of activation	43
III-	MATERIALS AND METHODS:	45
	(1) Starting materials	45
	(a) Oxalic acid	45
	(b) Citric acid	45
	(c) Succinic acid	45
	(d) Aconitic acid; purity and preparation	46
	(e) Sucrose; purity and sterilization	47
	1- Sterilization using U.V.L.	48
	2- Sterilization using sodium benzoate	49
	3- Sterilization by boiling	49
	(f) Organic acid concentrations	49
	i- Acids as they exist in cane juice	
	(max. conc.)	50
	ii- Acids in O.l the concentration in juic	e 50
	iii- Acids in 10 times of their existence	50
	iv- Acids combination of the above concentrations	50

	Page
(g) Enzyme invertase	50
Activity determination	50
(h) Natural cane juice	52
Clarification and deleading of the juice	53
Determination of sugars in natural cane juice) 53
1- Reducing sugar determination	53
2- Sucrose determination	54
(2) Kinetic Studies	56
A- Titrimetric determination	57
B- Polarimetric determination	59
IV- RESULTS AND DISCUSSION:	60
(1) Oxalic acid	61
A- Hydrolysis of sucrose (0.5116 molar)	
using different concentrations of oxalic acid at 40°C	62
B- Hydrolysis of sucrose (0.5116 molar) using different concentrations of oxalic acid at 20°C	66
C- Hydrolysis of sucrose (0.5116 molar) using different concentrations of oxalic acid at 6°C	70
(2) Aconitic acid	83
A- Hydrolysis of sucrose (0.5116 molar)	
aconitic acid at 40°C	84
B- Hydrolysis of sucrose (0.5116 melar) using different concentrations of aconitic acid at 20°C	88
C- Hydrolysis of sucrose (0.5116 molar) using different concentrations of aconitic acid at 5°C	92
(3) Citric acid	104
A- Hydrolysis of sucrose (0.5116 molar) using different concentrations of citric acid at 40°C	104

			ritrio
		5- Hydrolysis of sucrose (0.5116 molar) using different concentrations of citric acid at 20° C	108
		C- Hydrolysis of sucrose (0.5116 molar) using different concentrations of citric acid at 6°C	112
	(4) Succ	inic acid	123
	•	A- Hydrolysis of sucrose (0.5116 molar) using different concentrations of succinic acid at 40°C	123
		3- Hydrolysis of sucrose (0.5116 molar) using different concentrations of succinic acid at 20°C	127
		C- Hydrolysis of sucrose (0.5116 molar) using different concentrations of succinic acid at 6°C	131
	(5) Comb	ination of acids	143
		A- Hydrolysis of sucrose (0.5116 molar) using mixture of acids in different concentrations at 40°C	143
		B- Hydrolysis of sucrose (0.5116 molar) using mixture of acids in different concentrations at 20°C	148
		C- Hydrolysis of sucrose (0.5116 molar) using mixture of acids in different concentrations at 6°C	152
	(6) Enzy	me invertase	153
		Hydrolysis of sucrose (0.5116 molar) using enzyme inventase in addition to mixture of acids (max. cond.) at 40°C,	
		20°C and 5°C	164
	(7) Natu	ral Cane Juice	174
		Hydrolysis of natural cane juice at different temperatures, 40°C, 20°C & 6°C	174
V-	SUWMARY	AND CONCLUSION	181
VI-	REFERENC	ŒS	192

VII- ARABIC SUMMARY

PABLES CONTENT

able		rage
1	Total production and consumption, export and import of sugar in the U.A.R.	2
2	The yield of sugar in different factories in the U.A.R.	2
3	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of oxalic acid, to and invert sugar by polarimetric and titrimetric methods at 40°C	63
4	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of oxalic acid, to.5 and invert sugar by polarimetric and titrimetric methods at 20°C	67
5	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of oxalic acid, to and invert sugar by polarimetric and titrimetric methods at o'C	71
6	The rate of hydrolysis of sucrose (0.5116 molar) with oxalic acid and t _{0.5} by polarimetric and titrimetric methods at different temperatures and pH and the corresponding graphical values	75
7	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of aconitic acid, t _{0.5} and invert sugar by polarimetric and titrimetric methods at 40°C	85
8	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of aconitic acid, t _{0.5} and invert sugar by polarimetric and titrimetric methods at 20°C	89
9	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of aconitic acid, to 5 and invert sugar by polarimetric and titrimetric methods at 6°C	93
10	The rate of hydrolysis of sucrose (0.5116 molar) with aconitic acid and to by polarimetric and titrimetric methods at different temperatures and pH and the corresponding graphical values	98

Tab.le		FORE
11	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of citric acid, to, and invert sugar by polarimetric and titrimetric methods at 40°C	105
12	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of citric acid, and invert sugar by polarimetric and titrimetric methods at 20°C	109
13	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of citric acid, to and invert sugar by polarimetric and titrimetric methods at 6°C	113
14	The rate of hydrolysis of sucrose (0.5116 molar) with citric acid and to 5 by polarimetric and	
	titrimetric methods at different temperatures and pH and the corresponding graphical values	118
15	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of succinic acid, t _{0.5} and invert sugar by polarimetric and titrimetric methods at 40°C	124
16	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of succinic acid, to.5 and invert sugar by polarimetric and titrimetric methods at 20°C	128
17	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of succinic acid, to and invert sugar by polarimetric and titrimetric methods at 6°C	132
18	The rate of hydrolysis of sucrose (0.5116 molar) with succinic acid and t _{0.5} by polarimetric and titrimetric methods at different temperatures and pH and the corresponding graphical values	136
19	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of mixture of acids, t _{0.5} and invert sugar by polarimetric and titrimetric methods at 40°C	144

<u>Pable</u>		Pag:
50	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of mixture of acids, t _{0.5} and invert sugar by polarimetric and titrimetric methods at 20°C	149
21	Rate of hydrolysis of sucrose (0.5116 molar) using different concentrations of mixture of acids, t ₅₀ and invert sugar by polarimetric	
	and titrimetric methods at 6°C	153
22	The rate of hydrolysis of sucrose (0.5116 molar) with mixture of acids and to 5.5 by polarimetric and titrimetric methods at different temperatures and pH and the corresponding graphical values	157
23	Rate of hydrolysis of sucrose (0.5116 molar) with enzyme invertase in addition to mixture of acids (max. conc.) at 40°C, 20°C and 6°C	165
24	Rate of hydrolysis of natural cane juice at different temperatures 40°C, 20°C and 6°C	175
25	Rate of sucrose inversion at 40°C	1 83
26	Rate of sucrose inversion at 20°C	184
27	Rate of sucrose inversion at 6°C	185

d IGURIS CONTINI

Figure		<u>Page</u>
1	a plot of (4-x) versus time in case of 0.127, 0.0127, and 0.00127 molar exalic acid at 40°C	64
2	The percentage of invert sugar in different concentrations of oxalic acid at 40°C	65
3	A plot of (a-x) versus time in case of 0.127, 0.0127, and 0.00127 molar oxalic acid at 20°C	68
4	The percentage of invert sugar in different concentrations of oxalic acid at 20°C	69
5	A plot of (a-x) versus time in case of 0.127, 0.0127, and 0.00127 molar oxalic acid at 6°C	72
6	The percentage of invert sugar in different concentrations of oxalic acid at 6°C	73
7	A plot of log K versus pH of different oxalic acid solutions at different temperatures, 40°C, 20°C and 6°C	79
8	A plot of (a-x) versus time in case of 1.183, 0.1183, and 0.01183 molar aconitic acid at 40°C	86
9	The percentage of invert sugar in different concentrations of aconitic acid at 40°C	87
10	A plot of (a-x) versus time in case of 1.183, 0.1183, and 0.01183 molar aconitic acid at 20°C	90
11	The percentage of invert sugar in different concentrations of aconitic acid at 20°C	91
12	A plot of (a-x) versus time in case of 1.183, 0.1183, and 0.01183 melar aconitic acid at 6°C	94
13	The percentage of invert sugar in different concentrations of aconitic acid at 6°C	95
14	A plot of log K versus pH of different aconitic acid solutions at different temperatures, 40°C, 20°C and 6°C	100

Figure		rage
15	A plot of (a-x) versus time in case of 0.143, 0.0143, and 0.00143 molar citric acid at 40°C	106
16	The percentage of invert sugar in case of different concentrations of citric acid at 40°C	107
17	A plot of (a-x) versus time in case of 0.143, 0.0143, and 0.00143 molar citric acid at 20°C	110
18	The percentage of invert sugar in case of different concentrations of citric acid at 20°C	111
19	A plot of (a-x) versus time in case of 0.143, 0.0143, and 0.00143 molar citric acid at 6°C	114
20	The percentage of invert sugar in case of different concentrations of citric acid at 6°C	115
21	A plot of log K versus pH of different citric acid solutions at different temperatures, 40°C, 20°C, and 6°C	120
22	A plot of (a-x) versus time in case of 0.042, 0.0042, and 0.00042 molar succinic acid at 40°C	12 5
23	The percentage of invert sugar in case of different concentrations of succinic acid at 40°C	126
24	A plot of (a-x) versus time in case of 0.042, 0.0042, and 0.00042 moler succinic acid at 20°C	129
25	The percentage of invert sugar in case of different concentrations of succinic acid at 20°C	130
26	A plot of (a-x) versus time in case of 0.042, 0.0042, and 0.00042 molar succinic acid at 6°C	133
27	The percentage of invert sugar in case of different concentrations of succinic acid at 6°C	134
28	To plot of log K versus pH of different succinic acid solutions at different temperatures, 40°C, 20°C, and 6°C	139

Sea and property		1729
digure	and and art up o	
29	A plot of (a-x) versus time in case of mixture of acids corresponds with 1.10, 1.50, and at 40°C 1.93 pH	146
30	The percentage of invert sugar in case of different concentrations of mixture of acids at 40°C	147
31	A plot of (a-x) versus time in case of mixture of acids corresponds with 1.21, 1.61, and at 20°C 2.22 pH	150
32	The percentage of invert sugar in case of different concentrations of mixture of acids at 20°C	151
33	A plot of (a-x) versus time in case of mixture of acids corresponds with 1.41, 1.85, and 2.38 pH at 6°C	154
34	The percentage of invert sugar in case of different concentrations of mixture of acids at 6°C	155
35	A plot of log K versus pH of mixture of acids at different temperatures, 40°C, 20°C, and 6°C	161
36	A plot of (a-x) versus time in case of enzyme invertase at different temperatures, 40°C, 20°C, and 6°C	166
37	The percentage of invert sugar in case of enzyme invertase at different temperature. 40°C, 20°C and 6'C	167
38	A plot of (a-x) versus time in case of matural cane juice at different temperatures, 40°C, 20°C, and 6°C	177
39	The percentage of invert sugar in case of natural cane juice at different temperatures,	179

INTRODUCTION ...

I. INTRODUCTION

Sugar requires no comment to explain its nutritive value and it would be certainly difficult to imagine an existence without sugar both as a source of energy and as a sweetening agent. Spencer and Meade (1963) stated that the Arabs were responsible for the spread of cane culture around The Mediterranean area in the Middle Ages; the Arabian influence established the art of sugar refining in Egypt about 1000 A. D., but for for several centures the product continued to be a costly delicacy. Spencer and Meade (1963) indicated that more than 98 % of the sugar marketed in the U.S.A. is consumed for nutritional purposes.

The annual report submitted by the Ministry of Supplies and Home Trade (1969) indicated the consumption of 470,903 tons of sugar in the U.A.R. throughout the year 1968/1969, while the local production during the same period was 452,497 tons. The same report refers to 71,837 tons of exported sugar and 88,028 tons of imported sugar during the same period. Tables (1) and (2) indicate the local production of sugar in different factories during the period from 1965 to 1969; the exported and imported amounts of sugar were also included: