PHYSIOLOGICAL STUDIES CONCERNING FOLIAR NUTRITION AND FLOWER BUD INDUCTION IN ALMONDS

17

By

SANAD EL SAYED MOHAMED HABIB

B. Sc. Agric., (Cairo University), 1964 M. Sc. Hort., (Cairo University), 1969

DISSERTATION

Submitted in Partial Fulfilment of the Requirements for the Degree of

485

DOCTOR OF PHILOSOPHY

in

HORTICULTURE

Department of Horticulture

Faculty of Agriculture

Ain - Shams University

1975

The Thesis of
Sanad El Sayed Fohamed Habib
is Approved

By :

A. E. Bont Level

S. E. Maxime.

Committe in charge

Date: / - / 1975

A CK NO WLEDGEMENT

The writer wishes to express his deepest gratitude to Professor Dr. S. Maximos in the Horticulture Department, Faculty of Agriculture, Ain-Shams University, for his supervision, encouragement, kind help, and useful criticism during this work and the preparation of this manuscript.

Deep thanks are also due to Professor Dr. S. T. Boulos in the Plant Production Department, Desert Institute, Ministry of Agriculture and Land Reclamation for his supervision, encouragement, kind valuable advice and useful help during carrying out this work.

Sincere thanks are also due to Dr. H. Tawfik Professor of general Botany in the Department of Plant Pathology, Faculty of Agriculture, Ain-Shams University, for his valuable help.

o o w t w w t s

		Pag
IFTRODUCTION	~ ♦ *	1
REVIEW OF LITERATURE	• • •	3
VATERIALS AND METHODS	• • •	11
RECULTS	• • •	SI
I. Foliar absorption of urea sprays	• • •	21
II. Effect of urea foliar fertilization on	the almond	ì
tree	• • •	24
1. The effect of urea foliar fertilizat:	lon on	
flowering, fruiting and fruit quality	7	24
a. Flower bud induction	•••	24
b. Flower bud differentiation	• • •	30
c. Fruit set	• • •	51
d. The yield	• • •	54
e. The fruit characteristics	• • •	56
2. The effect of urea foliar fertilization	ion on	
the vigour of almond trees	• • •	61
a. Tree vigour	• • •	61
b. Leaf structure	•••	66
i. The effect on the palisade tissue	• • •	71
ii. The effect on the shongy tissue		72

	Face
to The effect of urea foliar fertilization on some	
najor contents	73
a. Total carbohydrate reserves in the shoots	73
b. Total nitrogen percentage in the leaves	79
DISCUSSION	84
SUBTEARY AND CONCLUSION	91
REFERENCES	96
Arabic Summary	

LIST OF TABLES

Table		Page
1	The total amount of rainfall (mms) during the	
	years of study	. 13
2	Total mitrogen in almond leaves sprayed with urea	
	solution	. 22
3	Flower buds opening in the spring as percentage of	
	total sprouting buds on girdled and defoliated	
	branches	. 25
4	Effect of urea foliar fertilization on percentage	
	induced flower buds at the time of bud opening	, 28
5	Distribution of different stages of flower bud	
	differentiation of Non parcil variety as affected	
	by different rates of urea fertilization	. 46
6	Distribution of different stages of flower bud	
	differentiation of Drake variety as affected by	
	different rates of urea fertilization	. "#0
7)	Fruit set as affected by urea foliar fertilization.	. 52
8	The yield of almond trees as affected by urea	
	foliar fertilization	. 55
8	Fruit and kernal characteristics of Nen pareil	
	almends as affected by urea foliar fertilization	. 57

Fa ol e	Pas.
13	Fruit and kernel characteristics of Drake almonds
	as affected by urea foliar fertilization 58
11	The almond tree vigour as affected by urea foliar
	fertilization 62
12	Almond leaf properties as affected by urea
	foliar fertilization 67
13	Seasonal changes in total carbohydrates in
	Non pareil shoot as affected by urea foliar
	fertilization (1971 season) 74
14	Seasonal changes in total carbohydrates in
	Non pareil shoot as affected by urea foliar
	fertilization (1972 season) 75
15	Seasonal changes in total carbohydrates in
	Drake shoot as affected by urea foliar
	fertilization (1971 season) 76
16	Seasonal changes in total carbohy/rates in
	Drake shoot as affected by urea foliar
	fertilization (1978 season) ??
17	Seasonal changes in total mitroben of Mon pareil
	leaves as affected by urea foliar fertilization 80
18	Seasonal changes in total nitrogen of Drake
	leaves as affected by urea foliar fertilization 8

LIST OF FIGURES

Figure		Page
1	Total nitrogen percentage in almond leaves sampled	
	at different intervals before and after application	
	of urea solution to the foliage	23
2	Flowering buds as rereentage of total sprouting buds	
	in the spring on branches ringed and defeliated	
	at various dates as affected by urea foliar	
	fertilization	26
3	Percentage of flowering buds as affected by urea	
	foliar fertilization	29
4	Fruit set percentage as affected by urea foliar	
	fertilization	53
5	The yield of almond trees as affected by urea	
	foliar fertilization	53
ϵ	The weight of the kernel as affected by urea	
	folior fertilization	59
7	The weight of the fruit as affected by urea	
	foliar fertilization	60
8	Oil content in almonds kernel as affected by	
	urea foliar fertilization	r' ()

Figure		Page
9	Shoot length as affacted by urea foliar fertilization	63
10	Number of leaves per shoot as affected by urea	
	foliar fertilization	64
11	Leaf area as affected by urea foliar fertilization	65
12	Seasonal changes of total carbohydrates (as gns	
	glucose) in Imond shoot as affected by urea	
	foliar fertilization	78
13	Seasonal changes of total nitrogen in Non pareil	
	leaves as affected by urea foliar fertilization	82
14	Seasonal changes of total nitrogen in Drake	
	leaves as affected by urea foliar fertilization	83

LIST OF PLATES

Plate		Tip ::: 6:
1	Vegetative (v) and generative (g) buds shown more	Page
	than one bud at the loof	
0		31
2	I.S. in dormant bud (stage 1)	32
3.	L.S. in the bud at the doom shape (stage 2)	34
4.	L.S. in the buds at stage (3)	35
5	L.S. in the buds at stage (4)	36
6	L.S. in the buds at stage (5)	37
7	I.S. in the flower bud at stage (6)	38
8	L.S. in the flower bud at stage (7)	
9		40
	T.S. at the basal part of the flower bud at stage (7)	41
10	I.S. in the flower bud at stage (8)	42
11	I.S. in the flower bud at stage (a)	
12	I.S. in the flower bud at stage (10).	43
13	T S in M	44
~ J	T.S. in Non pareil leaf showing the effect of	
	different rates of urea foliar fertilization on	
	the leaf structure	
14		58
	T.S. in Drake leaf showing the effect of	
	different rates of urea foliar fertilization on	
	the leaf structure	
	6	9
	alle alle alle alle	

I B T R O D O C T 1 O N

Mosaseae" family. The almond has been collivated from time immemorial. It is thought to be native to the Medeterranean basin (5). There are many references to almond in the Scriptures for it occurred freely in Palestine in a more or less wild state. Almonds were among the presents taken down to Egypt by the sons of Jacob. Nawadays almond is experted mainly from Spain, Italy, France, Fortugal, Moracco, the Canary Islands and Persia (23).

Almond trees can thrive on almost all types of soils providing adequate draingage. It can grow satisfactory in slightly saline soils and under conditions of low soil moisture (21). On the other hand, some varieties of almond are more sensitive to salinity than others, e.g. Texas variety is more sensitive than Non pareil (8).

In Egypt, alread is grown with a fair degree of success on the Northern coast from Alexandria Westward in addition to the coastal strip of Spinai and Arish Valley. Most almond cultivation are located in arid regions where many other fruit trees fail to grow. Yet, maximum yield could not be

covained in their regions unless we surviy the true with $m_{\rm col} r$ sufficient requirements of water and musclents.

The the present investigation the major aim was to study the ability of supplying the almond trees with usea nitrogen as foliar sprays since soil application could not be adapted where the rains which are the main source of water supply, are scarce and only limited within a certain period (from October to April). Another major aim in this investigation was to study the effect of usea foliar fertilization on flower bud induction and differentiation as well as fruitting of the tree.

REVIEW OF LITERATURE

The absorption of urea sprays

Mowadays, urea foliar fertilization has became a popular method of applying nitrogen to some horticulture crops.

Hamilton et al. (22) in 1943 mentioned that in many areas in the United States, nitrogen fertilization of apple trees by spraying them with urea solution has become an established practice. They added that this method of application gave more rapid response than soil application of other fertilizers. Furthermore, Beynton (6) and Fisher (16,17 and 18) found similar results from their field experiments.

As for the ability of stone fruit trees to absorb and and benefit from urea foliar sprays, Proebsting (33) mentioned that these trees have generally absorbed only a little urea and abowed negligible response.

Data concerning the ability of almond leaves to absorb and utilize urea foliar nitrogen are scarce in the available literature. Norton and Childers (29) working on Mission almond seedlings grown in sand culture in crocks.covered with vinclite caps to prevent contamination by urea spray dust or rain water, showed that urea sprays applied at 5 lb and 10 lb per 100 gallens caused less leaf drop late in the

prowth. They idded that almond trees proved to be more sensitive than peach and were dispet defoliated by urea at 1.0% which was the maximum tolerated without foliar burning by peach. Walker and Fisher (40) reported that the biuret impurity in the urea products was associated with the injury since there was no apparent injury with the crystal urea spray.

Flower bud inducttion and differentiation

Angiola (3) mentioned that the first external change of future almond flower buds was observed in mid-May. A change of the apical meristem occurred at the end of July. The beginning of the formation of the individual flower parts was marked by a sudden stop of the apical formation of leaf initials. The last of which ceased growth and lost their meristenatic character remaining as small protuberances of the apex. The apex first flattened at the top and ceased to grow, assuming the form of a cup. From the edge of the cup to the hottom, different floral organs were differentiated in the following order: calvx, coralla, stamen and overy. In the later half of October, the flower was completely formed, then its further growth and histological differentiation took place. At the end of January pollen grains were