

# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

### Flexural Behavior Of Reinforced Light Weight Concrete Beams Provided With Tension Bar Splices

## BY El-sayed Mohamed Anter Abdallah

Structural Engineer

#### A Thesis

Submitted in partial fulfillment for the requirements of the Degree of Master of Science in civil engineering (Structural)

#### Supervised by

### Prof. Dr. Omar Ali Mousa EL-Nawawy

Emeritus Professor of R.C. Structures Faculty of Engineering Ain Shams University

#### Dr. AMR H. ZAHER

Associate Professor, Structural Engineering Department, Ain Shams University

#### Dr. AMGAD A.TALAT

Assistant Professor, Structural Engineering Department, Ain Shams University

> Faculty of Engineering Ain Shams University Cairo-2014

**STATEMENT** 

This thesis is submitted to Ain Shams University, Cairo, Egypt, on march 2014

for the degree of Master of Science in Civil Engineering (Structural).

The work included in this thesis was carried out by the author in the

Department of Civil Engineering (Structural Division), Ain Shams University, from

September 2008 to March 2014.

No part of this thesis has been submitted for a degree or qualification at any

other University or Institute.

Date : 16 / 3/2014

Name: El-sayed Mohamed Anter

Signature: El-sayed

i



# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

### **APPROVAL SHEET**

: El-sayed Mohamed Anter Abdallah

**Thesis** 

**Student Name** 

Date: 16/3/2014

: Master of Science in Civil Engineering (Structural)

| Thesis Title: : Flexural Behavior Of Reinforced Light Weight Concrete Beams Provided With Tension Bar Splices                                                           |                  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| <b>Examiners Committee:</b>                                                                                                                                             | <b>Signature</b> |  |  |  |
| <b>Prof. Dr. Wael Mohamed Khleil Eldegwy</b> Minister of Higher Education and Scientific Research Professor of R.C. Structures Faculy of Engineering - Cairo University |                  |  |  |  |
| Prof. Dr. Osama Hamdy Abdelwahed Head of Building Inspection, Ministry of Housing Professor of R.C. Structures Faculy of Engineering - Ain Shams University             |                  |  |  |  |
| Prof. Dr. Omar Ali Mousa El Nawawy Emeritus Professor of R.C. Structures Ain Shams University (Supervisor)                                                              |                  |  |  |  |
| <b>Dr.</b> Amr Hussein Abd-elazim Zaher Associate Professor of R.C. Structures Ain Shams University (Supervisor)                                                        |                  |  |  |  |

# INFORMATION ABOUT THE RESEARCHER

Name: El-sayed Mohamed Anter Abdallah

Date of Birth: October 7th, 1984

Place of Birth: Fayuom, Egypt

Qualifications: B. Sc. Degree in Civil Engineering (Structural Eng.) Faculty of

Engineering, 6 October University (2007).

Present Job: Structural Engineer

Signature: El-sayed

#### ACKNOWLEGMENTS

#### First of all, I would like to thank God for every gift bestowed on me...

Next, I would like to extend my warmest heartfelt gratitude to **all my family** who stood by me and supported me in every step of my life. I would like to deeply thank them and convey my sincere appreciation for their assistance, encouragement, support, understanding, and patience.

Moreover, I would like to express my sincerest appreciation to my advisors, **Prof. Dr.**Omar El-Nawawy and Dr. Amro.H.zaher and for their guidance, continuous, valuable guidance, and the investments, giving me the opportunity to be involved in such interesting research.

I would like to extend sincere thanks to my advisor, **Dr. Amgad** for providing the guidance necessary to complete this research and also for his constant encouragement, support, and friendship which was the motivating force that kept work on my thesis in force until completion. I would like to express my admiration and thanks for his loyalty and trustfulness.

I would like to thank the Concrete Research Laboratory, Ain Shames University for supporting me during my research. I would like to thank those who helped and improved the means of casting and testing the samples. I am also grateful to those unmentioned others for contributing in countless ways to my writing and being interested in my research. To all of those contributors, I am most grateful..

I believe that I have given my utmost effort in developing this research as accurately and truthfully as possible. Moreover, I am surely personally responsible for the conclusions and opinions expressed here.

Finally, I'd like to dedicate this work to my beloved **my wife** as a taken of appreciation... I would like to extend my warmest heartfelt gratitude to such an honored...I was really fortunate to receive the benefit of his spirit and intelligence.

El-sayed Mohamed Anter Elzoghbi

#### AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL DEPARTMENT

Abstract of the M.Sc. Thesis Submitted by

#### ENG / EL-SAYED MOHAMED ANTER

Title of the thesis

### Flexural Behavior Of Reinforced Light Weight Concrete Beams Provided With Tension Bar Splices

#### **ABSTRACT**

The flexural behavior of reinforced light-weight concrete beams was tested experimentally and theoretically evaluated in this study. The objectives of this research work could be summarized in the following points: Background for light weight concrete, the flexural behavior of reinforced light-weight concrete beams. LWRC was obtained through the use of polystyrene foam as a partial aggregate's replacement to reduce the concrete dry unit weight from 23.0 KN/m<sup>3</sup> to 18.0 KN/m<sup>3</sup>. Eight LWRC beams were prepared, casted and tested under four point loading up to failure. The main studied factors were; 1) the percentage of spliced reinforcement in the beams, (25%, 50 % and 100% of spliced reinforcement in maximum bending moment).; 2) the effect of vertical stirrups in splice zones (no stirrups, 5 Ø8/m and 10 Ø 8/m) and 3) finally the effect of changing diameter of steel reinforcement bars (12mm bar diameter and 16 mm bar diameter). Seven light weight reinforced beams and one normal weight reinforced beam. Tested Beams with clear span of 3.0m and with a cross-section 20x40cm were casted and tested at Reinforced Concrete laboratory, Ain Shames University, the behavior of tested beams during loading up to failure and the tests results including the cracks pattern, the load deflection relation, and the mode of failure are presented and discussed. The obtained results show that tested beams with increasing percentage of splices reinforcement caused decreasing the deflection, steel strain and concrete strain increasing the failure load. Increasing percentage of stirrups caused decreasing the deflection and concrete strain and

increasing the failure load and steel strain. Increasing diameter bar caused decreasing the deflection, concrete strain and failure load and increasing the steel strain

. The thesis include eight beams was tested theoretically by Ansys program eight beams same the experimentally beams and one light weight concrete beam no splice in main reinforcement and another normal beam no splice in main reinforcement this two beams as a control beams. The results show that good acceptance by experimentally and theoretically study.

# **CONTENTS**

| ACKNO  | OWLEGME    | NTS                                | iv  |
|--------|------------|------------------------------------|-----|
| ABSTR  | ACT        |                                    | v   |
| CONTE  | ENTS       |                                    | vii |
| LIST O | F FIGURES  | S                                  | iii |
| LIST O | F TABLES.  |                                    | XX  |
| СНАРТ  | ER 1: INTR | RODUCTION                          |     |
| 1.1    | Backgrou   | nd                                 | 2   |
| 1.2    | Purpose o  | f Investigation                    | 4   |
| 1.3    | Scope of   | Work                               | 5   |
| СНАРТ  | ER 2: LITE | CRATURE REVIEW                     |     |
| 2.1    | Brief Hist | ory                                | 7   |
| 2.2    | Lightweig  | tht Aggregates – Classification    | 8   |
|        | 2.2.1      | Natural Aggregate                  | 8   |
|        | 2.2.2      | Artificial Mineral Aggregates      | 8   |
|        | 2.2.3      | Organic Aggregates                 | 13  |
| 2.3    | Light      | weight – Aggregate Properties      | 13  |
|        | 2.3.1      | Particle Shape and Surface Texture | 13  |
|        | 2.3.2      | Bulk Specific Gravity              | 14  |
|        | 2.3.3      | Unit Weight                        | 14  |
|        | 2.3.4      | Maximum Size                       | 14  |
|        | 2.3.5      | Strength Ceiling                   | 14  |
|        | 2.3.6      | Moisture Content and Absorption    | 15  |
| 2.4    | Mix Propo  | ortioning Methods                  | 16  |
| 2.5    | Properties | of Structural LWC                  | 16  |
|        | 2.5.1      | Compressive Strength               | 16  |
|        | 2.5.2      | Splitting Tensile Strength         | 16  |
|        | 2.5.3      | Modulus of Elasticty               | 17  |
|        | 2.5.4      | Poisson's Ratio                    | 17  |
|        | 2.5.5      | Bond Strength.                     | 17  |

|      | 2.5.6            | Creep and Shrinkage                        | 18 |
|------|------------------|--------------------------------------------|----|
|      | 2.5.7            | Ultimate Strain                            | 18 |
|      | 2.5.8            | Water Absorption                           | 19 |
|      | 2.5.9            | Permeability                               | 19 |
|      | 2.5.10           | Thermal Behavior                           | 19 |
|      | 2.5.11           | Acoustic Behaviour                         | 22 |
| 2.6  | Economy of St    | ructural Lightweight Concrete              | 23 |
| 2.7  | LWC in Codes     | s                                          | 23 |
|      | 2.7.1            | American Codes                             | 23 |
|      | 2.7.2            | British Codes                              | 24 |
|      | 2.7.3            | European Codes                             | 24 |
|      | 2.7.4            | Japanese Codes                             | 24 |
|      | 2.7.5            | Norwegian Codes                            | 25 |
|      | 2.7.6            | Australian Codes                           | 25 |
| 2.8  | Application of   | LWC                                        | 26 |
| 2.9  | Effect of Stir   | rups on Concrete Behavior                  | 30 |
| 2.10 | Bond Stress      | es                                         | 32 |
|      | 2.10.1           | Average Bond Stress in a Beam              | 32 |
|      | 2.10.2           | Actual Distribution of Flexural Bond Force | 35 |
|      | 2.10.3           | Bond Strength and Development Length       | 37 |
|      | 2.10.4           | Mechanism of Bond Failure                  | 40 |
| 2.11 | Lap Splice       |                                            | 43 |
|      | 2.11.1           | tenstion lap splices                       | 43 |
| 2.12 | Factor Effection | ng Lap Splices                             | 45 |
|      | 2.12.1           | Effect of Concrete Strength                | 45 |
|      | 2.12.2           | Effect of Steel Grade                      | 46 |
|      | 2.12.3           | Effect of Bar Size                         | 46 |
|      | 2.12.3 I         | Effect of Lap Splice Length                | 47 |
|      | 2.12.3 I         | Effect of Stirrups                         | 47 |
| 2.13 | Codes Predicti   | ion For Tension Lap Splice                 | 49 |
|      | 2.13.1           | Tension Lap Splice in Codes                | 49 |
|      | 2.13.2           | ACI 318-11 Code                            | 49 |
|      | 2.13.3           | Egyptian Code (ECP 203-2007)               | 60 |

|        | 2.13.4 EC-2 Code                               | 61 |
|--------|------------------------------------------------|----|
| 2.14 F | inite Element Modeling                         | 65 |
|        | 2.14.1 Introducing FEM utilizing ansys-package | 66 |
|        | 2.14. 1.1 The Pre-processing Phase             | 69 |
|        | 2.14.1.2 The Solution Phase.                   | 69 |
|        | 2.14.1.3 The Post-processing Phase             | 69 |
|        | 2.14.2 Element Types                           | 70 |
|        | 2.14.2.1 Reinforced Concrete                   | 70 |
|        | 2.14.2.2 Steel Reinforcement.                  | 74 |
|        | 2.14.2.3 FRP Composites                        | 74 |
|        | 2.14.3 Material Prosperities                   | 76 |
|        | 2.14.3.1 Concrete                              | 76 |
|        | 2.14.3.1.1 Uniaxial behavior of concrete       | 77 |
|        | 2.14.3.1.1.1 Uniaxial Compression              | 77 |
|        | 2.14.3.1.1.2 Uniaxial Tension                  | 79 |
|        | 2.14.3.2 Biaxial Behavior of Concrete          | 80 |
|        | 2.14.3.3 Multiaxial Behaviour of Concrete      | 81 |
|        | 2.14.3.3.1 Yield Criterion                     | 82 |
|        | 2.14.3.3.2 The Hardening Rule                  | 82 |
|        | 2.14.3.3.3 Flow Rule                           | 83 |
|        | 2.14.3.4 Cracking and Crushing of Concrete     | 83 |
|        | 2.14.3.4.1 Discrete Cracking Model             | 84 |
|        | 2.14.3.4.2 Smeared Cracking Model              | 86 |
|        | 2.14.3.5 Plasticity of Concrete.               | 86 |
|        | 2.14.3.6 Steel Reinforcement                   | 88 |
|        | 2.14.3.6.1 Discrete Approach                   | 89 |
|        | 2.14.3.6.2 Distributed Approach                | 89 |
|        | 2.14.3.6.3 Embedded Approach                   | 89 |
| CHAPTI | ER 3: EXPERIMENTAL WORK                        |    |
| 3.1    | Introduction                                   | 91 |
| 3.2    | Details of Test Specimens.                     | 91 |
| 3.3    | Characteristics of Used Materials              | 97 |
|        | 3.3.1 Aggregates                               | 97 |
|        | 3.3.2 Cement                                   |    |
|        | 3.3.3 Water                                    | 97 |

|        | 3.3.     | 4 Silica Fume                                       | 97  |
|--------|----------|-----------------------------------------------------|-----|
|        | 3.3.     | 5 Foam                                              | 98  |
|        | 3.3.6    | Sika viscocrete® additional                         | 98  |
|        | 3.3.     | 7 Reinforcing Steel                                 | 99  |
| 3.4    | Mix Pro  | oportions                                           | 99  |
| 3.5    | Prepara  | tion of Specimens                                   | 100 |
| 3.6    | Mixin    | g and curing                                        | 106 |
| 3.7    | Loadii   | ng of specimens                                     | 112 |
| 3.8    | Test P   | rocedure                                            | 113 |
| СНАРТЕ | ER 4: AN | ALYSIS OF TEST RESULTS                              |     |
| 4.1    | Introdu  | ction                                               | 117 |
| 4.2    | Crackin  | g Pattern                                           | 118 |
|        | 4.2.1    | Effect of Percentage of Splices Reinforced (Group1) | 118 |
|        | 4.2.2    | Effect of STIRRUPS (GROUP2)                         | 120 |
|        | 4.2.3    | Effect of DIAMETER BAR (GROUP3)                     | 122 |
| 4.3    | Load D   | eflection Realeationship                            | 123 |
|        | 4.3.1    | Effect of Percentage of Splices Reinforced (Group1) | 125 |
|        | 4.3. 2   | Effect of Stirrups (Group2)                         | 128 |
|        | 4.3.3    | Effect of Diameter Bar (Group3)                     | 131 |
| 4.4    | Beam Fa  | ailure Modes                                        | 139 |
|        | 4.5.1    | Effect of Percentage Of Splices Reinforced (Group1) | 139 |
|        | 4.5.2    | Effect of Stirrups (Group2)                         | 139 |
|        | 4.5.3    | Effect of Diameter Bar (Group3)                     | 139 |
| 4.5    | The C    | racking and the Ultimate Load                       | 147 |
|        | 4.5.1    | Effect of Percentage Of Splices Reinforced (Group1) | 147 |
|        | 4.5.2    | Effect of Stirrups (Group2)                         | 148 |
|        | 4.5.3    | Effect of Diameter Bar (Group3)                     | 148 |
| 4.6    | Strain N | Measurement in steel Reinforcement                  | 148 |
|        | 4.6.1    | Effect of Percentage of Splices Reinforced (Group1) | 149 |
|        | 4.6.2    | Effect of Stirrups (Group2)                         | 152 |
|        | 4.6.3    | Effect of Diameter Bar (Group3)                     | 155 |
|        |          |                                                     |     |

|        |                |               | n Concrete                                        |
|--------|----------------|---------------|---------------------------------------------------|
|        |                | •             |                                                   |
| CHAPTE | CR 5: THE      | ORTICAL       | ANALYSIS                                          |
| E 1    | To the desired | •             | 165                                               |
| 5.1    |                |               |                                                   |
| 5.2    |                | _             | eling L.W.C. Beam using ANSYS (9.0)165            |
|        | 5.2.1          | Element       | s Types                                           |
|        |                | 5.2.1.1       | Concrete Element                                  |
|        |                | 5.2.1.2       | Steel Reinforcement Element166                    |
|        | 5.2.2          | Real Co       | nstants                                           |
|        |                | 5.2.2.1       | Concrete Element                                  |
|        |                | 5.2.2.2       | Steel Reinforcement Element                       |
|        | 5.2.3          | Material      | Properties                                        |
|        |                | 5.2.2.1       | Concrete Element                                  |
|        |                | 5.2.2.2       | Steel Reinforcement Element                       |
|        | 5.2.4          | Modelin       | g172                                              |
|        |                | 5.2.4.1       | solid65                                           |
|        |                | 5.2.4.2       | link8                                             |
|        | 5.2.5          | Number        | ing Controls173                                   |
|        | 5.2.6          | Loads a       | nd Boundary Conditions                            |
|        | 5.2.7          | Analysis      | s Type                                            |
|        | 5.2.8          | Analysis      | s Process for the Finite Element Model175         |
|        | 5.2.9          | Load Ste      | epping and Failure Definition for FE Models177    |
| 5      | 3 Mode         | eling For Te  | sted Beam177                                      |
|        |                | IEDICAL I     |                                                   |
|        |                |               | RESULTS AND DISCUSSIONS                           |
| 6.1    |                |               | 193                                               |
| 6.2    | Cracking       | Pattern       | 194                                               |
|        | 6.2.1 H        | Effect of Per | centage of Splices Reinforced (Group1)195         |
|        | 6.2.2 H        | Effect of ST  | IRRUPS (GROUP2)198                                |
|        | 6.2.3          | Effect of DI  | AMETER BAR (GROUP3)200                            |
| 6.3    | Compari        | sons betwee   | en Groups (FEM)201                                |
| 6.4    | Comparis       | ons between   | n Experimental Results and Theoretical Results209 |

|                                                | 6.4.1                   | Comparison between Analytical Models and Experimental Result       | 209                                          |
|------------------------------------------------|-------------------------|--------------------------------------------------------------------|----------------------------------------------|
|                                                | 6.4                     | 4.1.1 The Ultimate Loads and Maximum Deflections Comparison in     |                                              |
|                                                |                         | Group1                                                             | 209                                          |
|                                                | 6.4                     | 4.1.2 Load-Deflection Plots at Midspan                             | 210                                          |
|                                                | 6.4                     | 4.1.3 Strain Measurement in Steel Reinforcement Comparison in Grou | ıp                                           |
|                                                |                         | 12                                                                 | 211                                          |
|                                                | 6.4                     | 4.1.4 Strain measurement in Concrete in Group 1                    | .213                                         |
|                                                | 6.4                     | 4.1.5 Failure mode, steel strain and deformed shape in group 12    | 213                                          |
|                                                | 6.4                     | 4.1.6 Summary and Conclusions for the Finite Element Models and    |                                              |
|                                                |                         | Experimental Results for Group 1                                   | .220                                         |
| 6.5 C                                          | ompari                  | ison between Analytical Models and Experimental Results for        |                                              |
|                                                | (                       | Group2                                                             | 220                                          |
|                                                | 6.5.1                   | The Ultimate Loads and Maximum Deflections Comparison in           |                                              |
|                                                |                         | Group2                                                             | 220                                          |
|                                                | 6.5.2                   | Load-Deflection Plots at Midspan                                   | .221                                         |
|                                                | 6.5.3                   | Strain measurement in Steel Reinforcement Comparison in Group2     | .222                                         |
| <ul><li>6.6</li><li>6.7</li><li>Beam</li></ul> | Group 6.6.1 6.6.2 6.6.3 | parison between Analytical Models and Experimental Results p3      | .224<br>n in<br>.224<br>.225<br>225<br>s for |
| 7.                                             | 1 0                     | 7: SUMMARY & CONCLUSIONS AND RECOMMENDATION  General  Conclusion   | .239<br>240                                  |

### REFERENCES

# LIST OF FIGURES

# Chapter(2)

| Figure (2-1) Thermal conductivity at different density                                                             | 21         |
|--------------------------------------------------------------------------------------------------------------------|------------|
| Figure (2-2) Stress strain curve for different concrete                                                            | 32         |
| Figure (2-3) Forced in reniforced concrete beam                                                                    | 33         |
| Figure (2-4) Variation of bar force through beam lenght                                                            | . 34       |
| Figure (2-5) position of maximum bond force                                                                        | 36         |
| Figure (2-6) splitting of concrete through reinforcement                                                           | 38         |
| Figure (2-7) force transfer betweensteel bar and concrete                                                          | 41         |
| Figure (2-8) typical spilliting failure surface                                                                    | 42         |
| Figure (2-9) tension lap splices                                                                                   | 44         |
| Figure (2-10) Reinforcement Requirements for Flexural Members of Special MorFrames.                                |            |
| Figure (2-11) Splices and Hoop Reinforcement for Flexural Members of Special                                       | <i>-</i> 1 |
| Moment FramesFigure (2-12) Transverse Reinforcement for Flexural Members of Special and Intermediate Moment Frames |            |
| Figure (2-13-a) Development of Positive and Negative Moment Reinforcement                                          | 57         |
| Figure (2-13-b) Development of Positive and Negative Moment Reinforcement-c                                        | . 58       |
| Figure (2-14) Percentage of lapped bars in one lapped section                                                      | 59         |
| Figure (2-15) Adjacent laps                                                                                        | 59         |
| Figure (2-16) Flow chart of ANSYS procedures                                                                       | 68         |
| Figure (2-17) Solid65 – 3-D reinforced concrete solid (ANSYS 1998) of B1                                           | 71         |
| Figure (2-18) Cracking Plane in Solid65 (ANSYS 1998)                                                               | 73         |
| Figure (2-19) Geometry, node location, and coordinate system of 3-D spar element                                   | nt75       |
| Figure (2-20) Solution output associated with element (LINK8) (ANSYS 1998)                                         | 75         |
| Figure (2-21) SHELL181 Finite Strain Shell (ANSYS 1998)                                                            | 77         |
| Figure (2-22) SHELL181 Stress Output (ANSYS 1998)                                                                  | 77         |
| Figure (2-23) Typical uniaxial compressive and tensile stress-strain curve for con                                 |            |
| Figure (2-24) Strength envelope for biaxial stress state                                                           |            |
| Figure (2-25) Schematic failure surface of concrete in three-dimensional stress sp                                 | ace        |
| Figure (2-26) Schematics of yield surface for kinematics-hardening material                                        | 84         |
| Figure (2-27) Stress-strain behavior of each of the plasticity options in ANSYS                                    | 85         |

| Figure (2-28) smeared crack                                            | 87  |
|------------------------------------------------------------------------|-----|
| Figure (2-29) Nodal Separation using two or four coincident nodes      | 87  |
| Figure (2-30) Multilinear kinematics hardening plasticity              | 88  |
| Figure (2-31) Multilinear stress-strain behavior of "Besseling" model  | 89  |
| Figure (2-32) Idealized stress-strain curve for steel reinforcement    | 90  |
| Chapter(3)                                                             |     |
| Figure (3-1) typical dimensions and reinforcement of BN1               | 93  |
| Figure (3-2) typical dimensions and reinforcement of BL1               | 93  |
| Figure (3-3) typical dimensions and reinforcement of BL2               | 94  |
| Figure (3-4) typical dimensions and reinforcement of BL3               | 94  |
| Figure (3-5) typical dimensions and reinforcement of BL4               | 95  |
| Figure (3-6) typical dimensions and reinforcement of BL5               | 95  |
| Figure (3-7) typical dimensions and reinforcement of BL6               | 96  |
| Figure (3-8) typical dimensions and reinforcement of BL7               | 96  |
| Figure (3-9) preparing of wooden form of the specimens                 | 100 |
| Figure (3-10) preparing of seel form of the specimens                  | 101 |
| Figure (3-11-1) preparing of seel to placing electrical strain guage   | 101 |
| Figure (3-11-2) preparing of seel to placing electrical strain guage   | 102 |
| Figure (3-11-3) preparing of seel to placing electrical strain guage   | 102 |
| Figure (3-12) placing of seel mesh in wooden form                      | 103 |
| Figure (3-13) position of electrical strain gauges in beam BN1         | 103 |
| Figure (3-14) position of electrical strain gauges in beam BL1         | 103 |
| Figure (3-15) position of electrical strain gauges in beam BL2         | 104 |
| Figure (3-16) position of electrical strain gauges in beam BL3         | 104 |
| Figure (3-17) position of electrical strain gauges in beam BL4         | 104 |
| Figure (3-18) position of electrical strain gauges in beam BL5         | 105 |
| Figure (3-19) position of electrical strain gauges in beam BL6         | 105 |
| Figure (3-20) position of electrical strain gauges in beam BL7         | 105 |
| Figure (3-21) placing Crushed dolomite and sand in mixing              | 106 |
| Figure (3-22) placing cement and foam in mixing                        | 107 |
| Figure (3-23) placing sikafum and viscocrete additional in mixing      | 107 |
| Figure (3-24) placing water in mixing                                  | 108 |
| Figure (3-25) take fresh concrete to placing in form                   | 108 |
| Figure (3-26) preparing cube to cast fresh concrete                    | 108 |
| Figure (3-27) cast fresh concrete in cube                              | 109 |
| Figure (3-28) cast fresh concrete in wooden form                       | 109 |
| Figure (3-29) vibrated fresh concrete by an electrical needle vibrator | 110 |