

A thesis submitted in partial fulfillment of

the requirements for the degree of MASTER OF SCIENCE

in

Agriculture (soil science)

2366

Ain Shams University

1992

NITROGEN BALANCE IN SOME EGYPTIAN SOILS CULTIVATED BY DIFFERENT LEGUMINOUS CROPS

BY

ALAA EL-DIN ABDEL-HAMID ABO EL-SOUD

A thesis submitted in partial fulfillment

of

the requirements for the degree of MASTER OF SCIENCE

in

Agriculture (soil science)

Department of Soil Science
Faculty of Agriculture
Ain Shams University

1992

APPROVAL SHEET

NITROGEN BALANCE IN SOME EGYPTIAN SOILS CULTIVATED BY DIFFERENT LEGUMINOUS CROPS

BY

ALAAEL-DIN ABDEL-HAMID ABO EL-SOUD

This thesis for M. Sc. degree has been approved by :

Prof. Dr. Saad M.El-Sherif Sherel Prof. Soil Sci. Ain Shams Univ.

Prof. Dr. Mohamed S.A. Safwat . M. S. A. . S. M.V. Prof. Microbiol., El- Menia Univ.

Prof. Dr. Abdel-Samad S. Ismail . A. S. Ismail. Prof. Soil Sci., Ain Shams Univ.

Date of examination : 6/6/1992.

NITROGEN BALANCE IN SOME EGYPTIAN SOILS CULTIVATED BY DIFFERENT LEGUMINOUS CROPS

ВУ

ALAA EL-DIN ABDEL-HAMID ABO EL-SOUD

B.Sc. Agric.(Soil Science), Fac. Agric. Ain Shams Univ., 1981

High Diploma, (Soil Science) Fac. Agric. El-Azhar Univ., 1985

Under the supervision of :

Prof. Dr. A.S. Ismail
Prof. of Agric. Soil Science.

Prof. Dr. M.E. El-Haddad Prof. of Agric. Microbiology.

Prof. Dr. S.M. Abdel-Wahab Head of Research of Agric. Microbiology, Soils and Water Research Institute, Agricultural Research Center.

ABSTRACT

The growth response of five leguminous hosts to rhizobia inoculation and their nitrogen fixation potential (measured by difference method or ¹⁵N) were evaluated with respect to soil type and nitrogen fertilization. Inoculated clover, faba bean and cowpea were grown on clay loam, sandy and calcareous sandy loam soils. Soybean and peanut were grown on clay loam and sandy soil, respectively. The leguminous plants under investigation were fertilized with 0.6 or 1.6 g N pot⁻¹, except soybean plants which were received 0.6 or 2.8 g N pot⁻¹. The symbiotic performance of

each system was determined by the level of nodulation, growth, nitrogen content, yield and nitrogen availability (using Nbalance and final N-gain calculations). Results showed that, soybean plants failed to form nodules in uninoculated treatment. All inculated plants, grown on soils fertilized with the lower dose of nitrogen, produced greater levels of nodulation than uninoculated or inoculated ones, received higher dose of nitrogen. The dry matter and N-contents were higher in the inoculated treatments received either lower or the higher dose of nitrogen compared to the uninoculated one. Although, alluvial soil was the most favourable medium for growth and N_2 -fixation of faba bean, clover and cowpea compared with the other two soils, the responses were obtained from sandy soil. Calculations of nitrogen balance gave positive effects due to application of rhizobia to any of the tested soils. Considerable variation in the amount of N_2 -fixed was repoted amongst the tested leguminous hosts grown in pots. The order of effectiveness was faba bean > clover > soybean > cowpea, as they have fixed 4.998, 3.007, 2.446 and 2.359 g N pot^{-1} , respectively, at maturity stage of inoculated plants having received the activation dose of nitrogen and grown on alluvial soil. The ^{15}N method, has shown that uninoculated field grown clover plants in alluvial soil have fixed 33.6, 49.4, 68.7 and 37.5 Kg N fed against 41.3, 65.8, 90.3 and 40.9 Kg N fed $^{-1}$ for inoculated ones being determined after 60, 110, 160 and 200 days of cultivation, respectively.

ACKNOWLEDGMENT

I would like to express my sincere gratitude and deep appreciation to Prof. Dr. A.S. Ismail, Professor of Soils Science and Prof. Dr. M.E. El-Haddad, Professor of Agric. Microbiology, Faculty of Agric., Ain Shams Univ., for their valuable supervision, constructive criticism and the very deep help during the whole of this study.

My deep thanks is also extended to Dr. S.M.Abd El-Wahab, Head Researcher of Agric. Microbiology, Soils and Water Research Institute, A.R.C., Giza, Egypt for his close supervision, constructive suggestions and significant guidance during the work of this research.

Sincere thanks to Dr. M.I. Mostafa, lecturer of Agric. Microbiology, Faculty of Agric., Ain Shams Univ. for his assistance during the statistical analysis and preparation of the manuscript.

I am grateful to all the staff members of Agric. Soil Microbiology Departments and ^{15}N laboratory especially Dr. Khadra A. Abbady, Soils & Water Research Institute, A.R.C., Giza, Egypt, for their great assistance and for the use of all the facilities.

Moreover, valuable acknoledgement and dedication to my mother for her continuous encouragement throughout my life.

CONTENTS

		Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
	2.1 Nitrogen sources in soil-plant systems	3
	2.2 Nitrogen gains from soil-plant systems	3
	2.2.1 Addition through crop and animal wastes	3
	2.2.2 Addition through biological N_2 -fixation	5
	2.2.3 Addition through fertilizers	6
	2.2.4 Addition by miscellaneous items	7
	2.3 Nitrogen losses from soil-plant systems	9
	2.3.1 Removal by crops	9
	2.3.2 Leaching losses	10
	2.3.3 Gaseous losses	11
	2.4 Factors affecting nodulation and symbiotic nitrogen fixation by rhizobia	13
	2.4.1 Rhizobial strains	14
	2.4.2 Environmental factors	14
	a Temperature	14
	b Soil pH	16
	c Light	19
	d Soil moisture	20
	e Combined nitrogen	22
	f Phosphorus fertilization	24
	2.5 Method for estimating nitrogen fixation	26
	2.5.1 Difference methods	27

		a	Comparison of a legume with a nonlegume	27
		b	Comparison of a nodulating with a nonnodulating legume	27
		С	Comparison of inoculated and uninoculated legume	28
	2.5.2	Ιs	otopic methods	29
		а	^{15}N natural abundance technique	29
		b	The isotopic dilution technique	30
		С	The A-value technique	30
		d	Use of $^{15}N_2$ technique	31
	2.5.3	In	direct methods	31
		a	Acetylene reduction assay	31
		b	Ureides assay method	32
	2.6 Co	ompa sse	arison between the different methods of ssing N_2 -fixation	33
	2.7 Ar	nou	nt of nitrogen fixed by leguminous crops	36
	2.7.1	Fal	pa bean (Vicia faba)	36
	2.7.2	Clo	over (Trifolium alexandrinum)	38
	2.7.3	Cov	wpea (Vigna unguiculata)	40
	2.7.4	Soy	ybean (Glycine max L.)	41
	2.7.5	Pea	anut (Arachis hypogaea)	44
3.	MATERIAL	S A	AND METHOL .S	45
	3.1 Se	eds	of the used varieties	45
	3.2 Sc	oil	samples of pot experiments	46
	3.3 So	oil	analyses of field experiment	48
	3.4 In	ocu	lants used	48
	3.5 In	ocu	lation procedure	48

	3.6	Layout of the pot experiments	50
	3.7	Layout of the field experiment	54
	3.8	Dry weight determination	55
	3.9	Total nitrogen determination	56
	3.10	Statistical analyses	56
	3.11	Nitrogen balance calculation	56
	3.12	¹⁵ N analyses	58
	3.13	A-value calculation	59
4.	RESUL	TS AND DISCUSSION	61
	4.1	Study of nitrogen balance by leguminous crops under greenhouse conditions as affected by inoculation, N-fertilization and soil type	61
		.1 Faba bean (Vicia faba) grown on three different soils	61
		2 Clover (Trifolium alexandrium) grown on three different soils	72
	4.1.	3 Cowpea (Vigna unguiculata) grown on three different soils	87
	4.1.	4 Soybean (Glycine max) grown on alluvial soil	98
	4.1.	5 Peanut (Arachis hypogaea) grown on sandy soil	107
		N ₂ -fixation potential and final nitrogen gain of the tested lequminous hosts under different conditions	
		1 Grain legumes	114
			114
		2 Forage legume	117
		Estimation of symbiotically fixed nitrogen by clover using ¹⁵ N A-value method under field conditions	119
		1 Nodulation status	110

	4.3.2	Dry weight and N-content	121
	4.3.3	Calculation of the symbiotically nitrogen	
		fixed using A-value method	122
5.	SUMMARY	AND CONCLUSION	127
6.	REFERENC	CES	137
7.	ARABIC S	SUMMARY	

List of Tables

		Page
1	Varieties of the leguminous and reference crops used	46
2	Physical and chemical properties of soil samples used in the pot experiments	47
3		49
4		50
5	The ratio of seeds weight required for sowing one feddan to the seeds weight for sowing one pot	58
6	Effect of inoculation with R. leguminosarum biovar viceae and N-fertilization on nodulation, growth and yields of faba bean plants, grown on three different soils	62
7		66
8	Nitrogen balance and final N-gain (g pot) by faba bean plants, grown on alluvial soil as influenced by inoculation with R. leguminosarum biovar viceae and N-fertilization	69
9	Nitrogen balance and final N-gain (g pot) by faba bean plants, grown in sandy soil as influenced by inoculation with R. leguminosarum biovar viceae and N-fertilization	70
10	Nitrogen balance and final N-gain (g pot) by faba bean plants, grown in calcareous soil as influenced by inoculation with R. leguminosarum biovar viceae and N-fertilization	71
11	Nodulation and dry weights at four cuts of clover plants as influenced by inoculation with R. leguminosarum biovar trifolii. N-fertilization	, ,
	type and soil	73

12	Nitrogen content of clover plants as influenced by inoculation with R. leguminosarum biovar trifolii, N-fertilization and soil type	78
13	Nitrogen balance and final N-gain (g pot-1) by clover plants grown in alluvial soil as influenced by inoculation with R. leguminosarum biovar trifolii and N-fertilization	81
14	Nitrogen balance and final N-gain (g pot-1) by clover plants grown in sandy soil as influenced by inoculation with R. leguminosarum biovar trifolii and N-fertilization	82
15	Nitrogen balance and final N-gain (g pot-1) by clover plants grown in calcareous soil as influenced by inoculation with R. leguminosarum biovar trifolii and N-fertilization	83
16	Total nitrogen gain from 4 cuts of clover plants grown on alluvial sandy and calcareous soils as affected by inoculation and N-fertilization	86
17	Effect of inoculation with Bradyrhizobium sp. (Vigna) and N-fertilization on nodulation, growth and yields of cowpea plants, grown on three different soils	88
18	Effect of inoculation with Bradyrhizobium sp. (Vigna) and N-fertilization on nitrogen content of cowpea plants, grown on three different soils	92
19	Nitrogen balance and final N-gain (g pot 1) by cowpea plants grown on alluvial soil as influenced by inoculation with <i>Bradyrhizobium</i> sp. (Vigna) and N-fertilization	
	Nitrogen balance and final N-gain (g pot ⁻¹) by cowpea plants, grown on sandy soil as influenced by inoculation with <i>Bradyrhizobium sp. (Vigna)</i> and N-fertilization	94 95
21	Nitrogen balance and final N-gain (g pot 1) by cowpea plants, grown on calcareous soil as influenced by inoculation with Bradyrhizobium sp. (Vigna) and N-fertilization	96
22	Effect of inoculation with B. japonicum and N-fertilization on nodulation, growth and yields of soybean plants, grown on alluvial soil	
		99

23	Effect of inoculation with B. japonicum and N-ferti- lization on nitrogen content of soybean plants, grown on alluvial soil	102
24	Nitrogen balance and final N-gain (g pot $^{-1}$) by soybean plants, grown on alluvial soil as influenced by inoculation with B . $japonicum$ and N -fertilization	104
2 5	Percentage of N_2 fixed by inoculated soybean plants, grown on alluvial soil (calculated by difference methods)	106
26	Effect of inoculation with Bradyrhizobium sp. (Arachis) and N-fertilization on nodulation, dry and weight yields of peanut plants, grown on sandy soil	108
27	Effect of inoculation with Bradyrhizobium sp. (Arachis) and N-fertilization on nitrogen content of peanut plants, grown on sandy soil	110
28	Nitrogen balance and final N-gain (g pot-1) by peanut plants grown on sandy soil as influenced by inoculation with Bradyrhizobium sp. (Arachis) and N-fertilization	112
29	Final N-gain (g Pot-1) and Ndfa (%) by four legum- inous plants, grown after 120 days, as influnced by inoculation with rhizobia, N-fertilization and soil types	115
	Final N-gain (g Pot-1) and Ndfa (%) by clover plants, grown on different soil types, as influenced by inoculation with R. leguminosarum biovar trifolii and N-fertilization	118
31	Effect of inoculation with R. leguminosarum biovar trifolii and N-fertilization on nodulation status, dry weight and nitrogen content of clover plants	120
32	Effect of inoculation with R. leguminosarum biovar trifolii on the amount of nitrogen fixed in shoots of clover plants at four cuts of growth period	124

- IIX -

LIST OF FIGURES

		page
Fig (1)	N-cycle in the soil	4
Fig (2)	Layout of field experimental plot	54
Fig (3)	Total N-content and amount of N_2 -fixed by faba bean plants, after 60 days of planting, as affected by inoculation, N-fertilization and soil type	67
Fig (4)	Total N-content and amount of N_2 -fixed by faba bean plants after 120 days of planting, as affected by inoculation, N-fertilization and soil type	67
Fig (5)	Total N-content and total amount of N_2 -fixed by clover plants through four cuts as affected by inoculation, N-fertilization and soil type	86
Fig (6)	Effect of inoculation and N-fertilization on total N-content and amount of N_2 -fixed by cowpea after 60 days of planting in alluvial, sandy and calcareous soils	97
Fig (7)		97
Fig (8)		103
Fig (9)	Effect of inoculation and N-fertilization on total N-content and amount of N ₂ -fixed by peanut plants, grown on sandy soil, after 60 and 120 days after planting	111