
620175

Ain Shams University Faculty of Engineering

A STUDY OF THE PROCESS OF HEATING A SOLID SURFACE BY IMPINGEMENT OF HOT JETS

91651

A THESIS BY

MOHAMED SAAD EL-DINE EL-MORSI B. Sc. Mechanical Power Engineering

Submitted in partial fulfilment of the requirements for the degree of M. Sc. In Mechanical Power Engineering

SUPERVISED BY

Prof. Dr. S. M. Abd El-Ghany Ain Shams University Ass. Prof. Dr. M. A. Noseir Ain Shams University

1995

PREFACE

This dissertation is submitted in partial fulfilment for the degree of Master of Science in Mechanical Engineering, to Ain Shams University.

The work included in this thesis was carried out by the author at the laboratories of the department of Mechanical Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at any other University.

Signature: M. F. Morsi

Name: Mohamed El-Morsi

Examiners committee

The undersigned certify that they have read and recommend to the Faculty of Engineering, Ain Shams University for acceptance a thesis entitled "A Study of the Process of Heating A Solid Surface by Impingement of Hot Jets", submitted by Mohamed Saad El-Din El-Morsi, in partial fulfilment of the requirements for the degree of Master of Science in Mechanical Engineering.

Signature

1. Prof. Dr. SALAMA ABD EL-HADY MOHAMED
Professor of Mechanical Engineering
Aswan Institute of Technology.

2. Prof. Dr. ADEL ABD EL MALAK EL-AHWANY
Professor of Mechanical Engineering
Faculty of Engineering, Ain Shams University.

Prof. Dr. SAMIR MOHAMED ABD EL-GHANY
Professor of Mechanical Engineering
Faculty of Engineering, Ain Shams University.

4. Ass. Prof. Dr. MAHMOUD ABD EL-RASHID NOSEIR

Assistant Professor of Mechanical Engineering
Faculty of Engineering, Ain Shams University.

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my supervisors Prof. Dr. S. M. Abdel Ghany, Dr. M. A. Noseir for their guidance, assistance, encouragement and patience at every stage of this research.

The support and suggestion of the faculty and staff at Ain Shams University is appreciated. Financial support by Ain Shams University is also gratefully acknowledged.

Lastly, I would like to show appreciation to my parents and my friends for their encouragement and perseverance and to them I dedicate my thesis.

Summary

Impinging jets are an established technique for obtaining high local transfer coefficients between a fluid and a surface. They are employed in different ranges of heat and/or mass transfer applications including; heating or cooling of large surface area products, drying of paper and textiles, cooling of gas turbine blades and annealing of metals and plastic sheets.

A significant amount of research has been conducted on the problem of cooling a uniform heat flux surface, with gas or liquid jets. However, there have been very few attempts to study the problem of heating a flat plate normal to the jet axis. The only experimental research, up to my knowledge, that studies heating an inclined flat plate using hot air jets has been carried out in 1952. Nevertheless this research has been criticised by other researchers.

In the present study an experimental investigation is conducted on the local heat transfer coefficients for a round jet of hot air, issuing from a 27 mm diameter tube, striking an oblique solid surface. The problem parameters investigated are the plate inclination, the nozzle-to-plate spacing and the jet Reynolds number. It is found that the point of maximum heat transfer is displaced uphill from the geometric impingement point and the magnitude of this displacement increases as the plate inclination increases. The local coefficients on the uphill side of the point of maximum heat transfer tend to drop off more rapidly, unlike those on the downhill side. Thus, on comparing oblique impingement to normal impingement, there is an unsymmetric distribution in the local heat transfer coefficients about the stagnation

point, this asymmetry increases as the plate inclination increases. Moreover, inclined jets provide higher heat transfer coefficients on the downhill side and lower heat transfer coefficients on the uphill side, leading to imbalance in the heating capabilities on the two sides. It is also observed that the stagnation point Nusselt number decreases as the plate inclination increases. An empirical correlation of the experimental data along the plane of the plate inclination is developed.

Table of Contents

		Page
ACKNOWLEDG	GEMENT	i
SUMMARY		ii
CONTENTS		iv
NOMENCLATURE LIST OF FIGURES		
CHAPTER (1)	INTRODUCTION	1
	1.1 Overview	1
	1.2 Scope of Work	2
	1.3 Thesis Layout	2
CHAPTER (2)	LITERATURE REVIEW	4
,	2.1 Introduction	4
	2.2 Hydrodynamics of the	4
	Impingement Flow	5
	2.3 Jet Impingement Heat Transfer	7
	2.3.1 Normal Impingement	8
	2.3.1.1 Heat Flow Measurements	8
	2.3.1.2 The Results	9
	2.3.2 Oblique Impingement	10
	2.3.2.1 Heat Flow Measurements	11
	2.3.2.2 The Results	12
	2.4 Aim of the Present Work	13

		••
CHAPTER (3)	EXPERIMENTAL WORK	20
	3.1 Introduction	20
	3.2 Test plate	20
	3.3 Plate Fixation Mechanism	21
	3.4 Air Supply system	22
	3.5 Air Control Valves	22
	3.6 Air Heating Unit	22
	3.7 Air Heating Control System	23
	3.8 Measuring Instruments	23
	3.8.1 Temperature Measurements	23
	3,8.2 Heat Flow Measurements	25
	3.8.2.1 Theory of Operation	
	of Heat Flow Meter	26
	3.9 Test Rig Operation Procedure	28
CVI A EVELED (A)	RESULTS AND DISCUSSION	39
CHAPTER (4)	4.1 Introduction	39
	4.2 Definitions and Calculations	39
	4.3 X-axis Profiles	40
	4.3.1 Presentation of	
	Experimental Results	40
	4.3.2 Effect of the	
	Experimental Variables	42
	4.3.2.1 Reynolds Number	42
	4.3.2.2 Plate Inclination	42
	4.3.2.3 Nozzle-to-Plate Spacing	44
	4.3.3 Correlative Equation	46
	4.4 Y-axis Profiles	46
	4.4.1 Presentation of	
	Experimental Results	46
	4.4.2 Effect of the	
	Experimental Variables	47
	4.4.2.1 Plate Inclination	47
	4 4 2 2 Nozzle-to-Plate Spacing	47

CHAPTER (5)	CONCLUSIONS AND	
	RECOMMENDATIONS	75
	5.1 Conclusions	75
	5.2 Recommendations	77
REFERENCES		78
APPENDICES		

