

Ain Shams University Women's College for Arts, Science & Education Biochemistry and Nutrition Department

Biochemical role of wheat germ and grape seed oils on some organs function alteration induced by chlorpyrifos in rats

Thesis Submitted in Partial Fulfillment of Ph.D. Degree in Science Biochemistry and Nutrition

By Marwa Mosaad Hassan Hessin Ali

Assistant Lecturer in Dep. of Biochemistry and Nutrition, Women's College Ain Shams University

Under supervision of

Dr. Fatma Abd El Hamid Khalil

Assistant Prof. of Nutrition Biochemistry and Nutrition Dept. Women's College Ain Shams University

Dr. Fares Khairy A. Khalifa

Assistant Prof. of Biochemistry Biochemistry and Nutrition Dept. Women's College Ain Shams University

Dr. Heba Adel Abd El Hamid

Lecturer in Biochemistry and Nutrition Dept.
Women's College
Ain Shams University

جامعة عين شمس كلية البنات للاداب والعلوم والتربية قسم الكيمياء الحيوية والتغذية

الدور البيوكيميائى لزيت جنين القمح وزيت بذور العنب على التغيرات في وظائف بعض الاعضاء المحدثة بواسطة الكلوربيرفوز في الفئران

رسالة مقدمة إلى كلية البنات – جامعة عين شمس للحصول على درجة دكتوراه الفلسفة في الكيمياء الحيوية والتغذية

مقدمة من مروى مسعد حسن حسين على مدرس مساعد – قسم الكيمياء الحيوية والتغذية كلية البنات – جامعة عين شمس

تحت إشراف

د/ فارس خيرى أحمد خليفة أستاذ مساعد الكيمياء الحيوية قسم الكيمياء الحيوية والتغذية كلية البنات - جامعة عين شمس

د/ فاطمة عبد الحميد خليل
 أستاذ مساعد التغذية
 قسم الكيمياء الحيوية والتغذية
 كلية البنات ـ جامعة عين شمس

د/ هبه عادل عبد الحميد مدرس بقسم الكيمياء الحيوية والتغذية كلية البنات - جامعة عين شمس

Abstract

The purpose of this study was to assess the biochemical role of wheat germ and grape seed oils as well as avemar on the liver and kidney function tests and the oxidative stress alteration induced by chlorpyrifos in rats; moreover the haematological measurements and histological investigation were studied.

Chlorpyrifos (CPF) is an organophosphate insecticide widely used for a variety of agricultural and public health applications. Chlorpyrifos was added to the different experimental tested diets at two levels, low and high doses (25 and 50 mg/kg diet respectively). Wheat germ oil and grape seed oil were added to the experimental diets at a level of 200 mg/kg diet, while fermented wheat germ (avemar) was added at a level of 3g/kg diet for 30 days experimental period.

Results demonstrated that there were significant decrease in the total counts of RBC's, WBC's, erythrocyte indices, hemoglobin concentration and hematocrit level in experimental rats fed diets containing low and high levels of CPF.

Liver functions is impaired in rats administrated only chlorpyrifos and the results showed a significant increase in enzyme activities such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transferase (γ GT), while total proteins, albumin, and globulin showed a significant decrease at high and low doses of CPF treated groups but kidney functions results showed a significant increase in serum creatinine and urea levels.

Administration of CPF caused a significant increase in lipid peroxidation level, lipid profile while the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-s-transferase (GST) were decreased significantly. Also it caused a marker changes in the overall histopathology of liver which could be due to the toxic effect of CPF.

Wheat germ oil, grape seed oil or avemar supplementation caused significant improvement in all results in comparison with those groups administrated CPF.

List of Contents

Title		Page
Intro	duction	1
Aim o	of the work	4
Revie	w of literature	5
1. Ef	fects of chlorpyrifos on liver	13
2. Ef	fects of chlorpyrifos on renal system	15
3. Ef	fects of chlorpyrifos on cardiovascular system	16
4. Ef	fects of chlorpyrifos on haematology	17
Grape	seed oil	20
Whea	t germ oil	26
Avem	ar	30
Matei	rial and methods	35
Mate	rials:	35
•Expe	rimental animals and housing.	35
•Expe	rimental Diets:	36
Meth	ods:	36
1. Bio	logical Evaluation:	36
 Exp 	perimental Design:	36
2.Hae	matological measurements :	39
2.1	Erythrocytes (RBC's) count	39
2.2	Leukocytes (WBC's) count	40
2.3	Platelets count	40
2.4	Hematocrit measurement	41
2.5	Hemoglobin measurement	41

2.6 Erythrocyte indices:	
2.6.1 Constants relating to erythrocytes size	
2.6.2 Constants relating to hemoglobin content of erythrocytes	
3.Biochemical measurements	
3.1 Some liver function tests	
3.1.1 Determination of alanine aminotransferase (ALT) activity 44	
3.1.2 Determination of aspartate aminotransferase (AST) activity:	
3.1.3 Determination of alkaline phosphtase activity	
3.1.4 Determination of γ-glutamyl transferase activity50	
3.1.5 Determination of total protein concentration51	
3.1.6 Determination of albumin concentration	
3.1.7 Determination of globulins concentration	
3.1.8 Determination of A/G ratio. 53	
3.2 Kidney function tests	
3.2.1 Determination of creatinine concentration	
3.2.2 Determination of urea concentration	
3.3 Evaluation of lipid peroxidation	
3.3.1 Non enzymatic product malondialdehyde concentration (MDA)56	
3.3.2 Determination of enzymatic antioxidant activities	
3.3.2.1 Determination of superoxide dismutase activity	
3.3.2.2 Determination of catalase activity	
3.3.2.3 Determination of glutathione-s-transferase activity	
3.4 Determination of lipids profile	
3.4.1 Determination of total lipids concentration	
3.4.2 Determination of total cholesterol concentration	

References	179
Recommendation	178
Conclusion	178
Summary	173
Discussion	142
Results	73
5. Statistical analysis	72
4. Histopathological examination	71
LDL-cholesterol)	71
3.4.5 Calculation of low and very low density lipoprotein (VLDL and	
3.4.4 Determination of triacylglycerols concentration:	69
(HDL-C) concentration:-	68
3.4.3 Determination of high density lipoprotein cholesterol	

List of tables

Table No.		Page
Table (1)	Composition of the balanced diet * (g $/100$ g diet).	36
Table (2)	Biological evaluation (Food intake, body weight changes, Feed efficiency ratio (FER) of rats in different experimental groups.	75
Table (3)	Relative weights of liver, kidney and spleen for rats in different experimental groups.	76
Table (4)	Counts of (RBC's, $106/\mu l$), (WBC's, $103/\mu l$), platelets ($103/\mu l$), and levels of (Hb, g/dl) and (Hct %) in different experimental groups.	79
Table (5)	Mean corpuscular volume MCV mean corpuscular hemoglobin MCH and mean corpuscular hemoglobin concentration MCHC in different experimental groups.	86
Table (6)	Serum alaninamino transferase (ALT), aspartateamino transferase (AST) and alkaline phosphatase (ALP) and gamma glutamyle transferase (δ GT) activities in different experimental groups.	91
Table (7)	Serum total protein, albumin, globulins and A/G ratio in different experimental groups.	98
Table (8)	Serum creatinine and urea for different experimental groups.	105
Table (9)	Serum malondialdhyde (MDA) level, erythrocyte superoxide dismutase (SOD), plasma catalase and glutathione –S-transfrase (GST) activity in different experimental groups.	110

- Table (10) Serum total lipid, total cholesterol, 117 triacylglycerols (TG) mg /dl in different experimental group.
- Table (11) Serum high density lipoprotein cholesterol 122 (HDL-C), low density lipoprotein cholesterol (LDL-C), very low density lipoprotein (VLDL-C), and LDL/HDL ratio experimental group.

List of figures

Fig. No.		Page
Fig.(1)	Effect of different supplemented diet on RBC's count	80
Fig.(2)	Effect of different supplemented diet on WBC's count	81
Fig.(3)	Effect of different supplemented diet on Platelets count	82
Fig.(4)	Effect of different supplemented diet hemoglobin level	83
Fig.(5)	Effect of different supplemented diet hematocrit level	84
Fig.(6)	Effect of different supplemented diet on MCV indices	87
Fig.(7)	Effect of different supplemented diet on MCH indices	88
Fig.(8)	Effect of different supplemented diet on MCHC indices	89
Fig.(9)	Effect of different supplemented diet on ALT activity.	92
Fig.(10)	Effect of different supplemented diet on AST activity.	93
Fig.(11)	Effect of different supplemented diet on alkaline phosphatase activity.	94
Fig.(12)	Effect of different supplemented diet on γGT activity.	95
Fig.(13)	Effect of different supplemented diet on total proteins level.	99
Fig.(14)	Effect of different supplemented diet on albumin level.	100
Fig.(15)	Effect of different supplemented diet on globulins level.	101
Fig.(16)	Effect of different supplemented diet on A/G ratio.	102
Fig.(17)	Effect of different supplemented diet on Creatinine level.	106
Fig.(18)	Effect of different supplemented diet on urea level.	107
Fig.(19)	Effect of different supplemented diet on malondialdehydlevel.	111

Fig.(20)	Effect of different supplemented diet on SOD level.	112
Fig.(21)	Effect of different supplemented diet on catalase level.	113
Fig.(22)	Effect of different supplemented diet on GST activity.	114
Fig.(23)	Effect of different supplemented diet on total lipids level.	118
Fig.(24)	Effect of different supplemented diet on total cholesterol level.	119
Fig.(25)	Effect of different supplemented diet on total triacylglycerols level.	120
Fig.(26)	Effect of different supplemented diet on high density lipoprotein cholesterol HDL-C.	123
Fig.(27)	Effect of different supplemented diet on low density lipoprotein cholesterol LDL-C.	124
Fig.(28)	Effect of different supplemented diet on Very low density lipoprotein cholesterol VLDL-C.	125
Fig.(29)	Effect of different supplemented diet on LDL/HDL ratio.	126
Fig.(30)	Photomicrograph of liver from control group (G1) showing the normal histological structure (H & E stain-X 150).	130
Fig.(31)	Photomicrographs of liver section of rats consumed low dose of CPF (G2) showing fatty change. Notice the small and large vacuoles in the hepatocytes with displacement of the nuclei. (H & E X 150).	131
Fig.(32)	Show focal necrosis with inflammatory infiltration (H & E X 150).	131
Fig.(33)	Show congestion of the portal area (H & E X 150).	132
Fig.(34)	Photomicrographs of liver section of rats consuming high dose of CPF (G3) showing fatty change, the large vacuoles in the hepatocytes with displacement of the nuclei. (H & E X 150).	133
Fig.(35)	Show congestion of the portal area and inflammatory infiltration (H & E X 150).	133
Fig.(36)	Photomicrographs of liver section of rats consumed LCPF+wheat germ oil (G4) showing few vacuoles in the hepatocytes with displacement of the nuclei. (H & E X 150).	134

	Showing some vacuoles of fatty change most of the	134
Fig. (37)	hepatocytes (H & E X 150).	
	Photomicrograph of liver section of rats consumed	
Fig. (38)	HCPF+wheat germ oil (G5) showing few vacuoles	135
1 18. (00)	in the hepatocytes with displacement of the nuclei	100
	(H & E X 150).	
	Photomicrographs of liver section of rats consumed	
E:- (20)	LCPF+grape seed oil (G6) showing fatty change in	126
Fig. (39)	· · ·	136
	that associated with inflammatory infiltration. (H & E X 150).	
	Showing the hepatocytes that appear more or less	
Fig.(40)	like control except few vacuoles of fatty change (H	136
5 '(')	& E X 150).	
F: (41)	Showing the hepatocytes appears more or less like	127
Fig.(41)	control (H & E X 150).	137
	Photomicrograph of liver section of rats consumed	
	HCPF+grape seed oil of rats of (G7) showing few	
Fig.(42)	vacuoles in the hepatocytes with displacement of	138
	the nuclei and the most of the hepatocytes (H & E X	
	150).	
	Photomicrographs of liver section of rats consumed	
Ei~ (42)	LCPF+avemar of rats of (G8) showing few	120
Fig.(43)	vacuoles in the hepatocytes with displacement of the nuclei and the most of the hepatocytes. (H & E	139
	X 150).	
T: (44)	Showing fatty change in the hepatocytes (H & E X	120
Fig.(44)	150).	139
	Showing few vacuoles in the hepatocytes with	
Fig.(45)	displacement of the nuclei and the most of the	140
	hepatocytes (H & E X 150).	
E. (46)	Photomicrographs of liver section of rats consumed	1 / 1
Fig.(46)	HCPF+avemar (G9) showing focal necrosis and few vacuoles in the hepatocytes. (H & E X 150).	141
	Showing congest central vein most of the	
Fig.(47)	hepatocytes (H & E X 150).	141
	-r J ().	

Introduction

Environmental pollution from pesticides is an important issue that attracts wide spread public concern. Among them, some pesticides such as organophosphorus compounds commonly used in agriculture for achieving better quality products also have brought tremendous benefits to mankind by increasing food production and controlling the vectors of man and animal diseases. At the same use of these pollutants has posed potential health hazards to the life are toxic substances and lead to generation of reactive oxygen species (ROS) which have harmful effects on human health. (*Tuzmen et al., 2008*).

Chlorpyrifos (CPF) is a broad-spectrum organophosphorus insecticide utilized extensively in agriculture (Saulsbury et al., 2009) and elicits a number of additional effects. including hepatic dysfunction, immunological haematological abnormalities. and embryotoxicity, genotoxicity, neurotoxicity and neurobehavioral changes (Mehta et al., 2009).

Pesticides, are known to increase the production of reactive oxygen species (ROS), which in turn generate oxidative stress in different tissues (Rai and Sharma, 2007; Mehta et al., 2009). Chlorpyrifos also induces oxidative stress and the accumulation of lipid peroxidation products in different organs (Verma et al., 2007; Mansour and Mossa, 2009).

ROS may interact with cellular proteins, lipids and causing alterations in cell function. hydrophobic insecticides molecules that bind are biological membranes, extensively to especially phospholipids bilayers (Ogutcu et al., 2008), and they may damage membranes by inducing lipid peroxidation (LPO) (Kalender et al., 2010; and Celik and Suzek, 2009).

Cells have several ways to alleviate the effects of oxidative stress. They can either repair the damage or directly reduce the pro-oxidative state via enzymatic and non-enzymatic antioxidants. Non-enzymatic (vitamins E and C, flavonoids, etc.) and enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) antioxidants have been shown to scavenge free radicals and ROS (*Uzun et al.*, 2010).

Antioxidants have been shown to inhibit free radical formation (Durak et al., 2010). Human diets also contain phytochemicals, such as flavonoids, that are metabolized by the same pathway as toxic man-made chemicals, such as pesticides and other environmental pollutants antioxidant (Panemangalore and Bebe, 2009). The properties of flavonoids are due to their ability to directly scavenge some radical species and may also act as chainbreaking antioxidants and/or may recycle other chainbreaking antioxidants, such as alpha-tocopherol, by donating a hydrogen atom to the tocopheryl radical (Uzun et al., 2010).

Grape (Vitis vinifera) is one of the world's largest fruit crops and grape seed extract is a complex matrix containing approximately 40% fiber, 16% oil, 11% proteins, and 7% complex phenols including tannins, in addition to sugars, mineral salts, etc. Grape seed oil (GSO) is a well-known dietary supplement, contains important vitamins, minerals, and polyphenols including flavonoids, proanthocyanidins and procyanidins. It has recently become clear that GSO has shown various beneficial pharmacological effects such as its chemoprotective properties against reactive oxygen species and oxidative stress as well as being antiinflammatory, anti-bacterial, and anti-cancer. Moreover, epicatechin is able to scavenge hydroxyl radicals, peroxyl radicals, superoxide radicals. Procyanidins are reported to have potent antioxidant activity both in vitro and in vivo. (Suwannaphet et al., 2010).

Wheat germ oil, that makes up only 7-12% of the seed, is an excellent source of natural vitamin E and tocopherols, the richest known source in nature. Organic cold-pressed wheat germ oil is a deep orange color, rich in beta carotene, and has a full balance of mixed tocopherols from which vitamin E is derived. Gamma, beta, and alpha tocopherols are all present in the oil making the vitamin E gamma tocopherols are free radical scavengers that give wheat germ oil its potent antioxidant qualities (Zhu et al., 2011). Wheat germ oil is also rich in unsaturated fatty acids, mainly oleic, linoleic and α-linoleic acids (Sjovall et al., 2000) and in functional phytochemicals, mainly flavonoids, sterols, octacosanols and glutathione (Zhu et al., 2006). Animal studies show that intake of wheat germ oil results in a rapid increase in the content of vitamin E in the brain, liver, heart, lungs, kidneys, and spleen and gives powerful antioxidant protection to these organs and tissues (Mehranjani et al., 2007; and Field et al., 2008). Wheat germ oil has been attributed to reduced plasma and liver cholesterol in animals, improved physical endurance, and delayed aging (Megahed, 2011).