KINETICS OF ION TRANSPORT

IN PLANT

 $\mathbf{B}_{\mathbf{y}}$

ESSAM MOHAMED ABD-EL MONIEM MOHAMED

A thesis submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

i n

Agricultural Science
(Soil Science)

Can't

With

Soil Science Department Faculty of Agriculture Ain Shams University

Approvel Sheet

KINETICS OF ION TRANSPORT IN PLANT

 $\mathbf{B}_{\mathbf{y}}$

ESSAM MOHAMED ABD-EL MONIEM MOHAMED

B.Sc.Agric. (Soil Science) Ain Shams University 1981 M.Sc.Agric. (Soil Science) Ain Shams University 1986

This thesis for Ph.D. degree has been approved by :

	Dr. A.A. El-Damaty
	Dr. M.K. Sadek . M. K. Sadek. Professor of Soil S.
Prof.	Professor of Soil Science and Dean of Moshtohor Dr. A.E.El-Leboudi Professor of Soil
	Professor of Soil Science, Fac. of Agric., Ain-Shams Univ.

Date of examination:

KINETICS OF ION TRANSPORT IN PLANT

Βv

ESSAM MUHMED ABD-EL MONIEM MOHAMED

- B. Sc. Agric. (Soil Science) Ain Shams University 1981
- M. Sc. Agric. (Soil Science) Ain Shams University 1986 Under the Supervision of: Dr. A. E. EL-Leboudi

Professor of Soil Science

ABSTRACT

Excised barley roots for two genotypes (Giza 121 and Sahrawy) were selected to study the absorption kinetics of some nutritional elements. The study involved evaluation for absorption of both macroelements, represented by P, and microelements represented by Fe.

The study included evaluation for the maximum velocity (Vmax) and Michaelis constant (Km) along with their responses to environmental factors including period of investigation, pH, accompanied cations or anions and concentration of concerned ions.

The relationship between uptake kinetics and certain anatomical and genetic features was also evaluated. Results showed the following:

- 1) Positive uptake responses of both phosphate and iron as absorption time progressed.
- Negative uptake responses of phosphate absorption

- at presence of FeSO in the absorption media, 4 presence of KH PO being favorable for absorption of 2 4 Fe from Fe-EDDHA.
- 3) Either positive or negative responses to different pH values of the absorption media, OH being generally depressive for phosphate uptake and H being promotive for iron uptake.
- Concentration of concerned ions was effective on 4) the absorption of both phosphate and iron. relationship being characterized by two phases each having different maximum velocity (Vmax) and Michaelis constant (区m)。 Such parameters were generally dependent on the ion under consideration as well as the accompanied ions in the absorption media.
- 5) The rate of concerned ion uptake increased with increasing the cortex area for both elongation zone and root hair one, such area being responded to concentrations of concerned ion in the absorption media.
- 6) There are differences in polypeptide bands between studied barley genotypes, some of these bands being responded for concentration of concerned ions in the absorption media.

ACKNOWLEDGEMENT

The author wishes to express his appreciation and deepest gratitude to Dr. A. E. El-Leboudi, professor of Soils, and Dr. H. E. Abu Hussin, Lecturer of Soils, Soil Science Department, Faculty of Agriculture, Ain Shams University, for suggesting the problem, supervision, progressive criticisms, deep interest and effective guidance throughout the investigation and preparation of the manuscript as well as for his helpful personal advice.

Deepest thanks and gratitudes are also due to Dr. S. A. Habib associate Prof. of Agric. Botany for his valuable help and support during the anatomical studies of the work.

The author wishes to express special thanks to Dr. F.M. Abdel-Tawab, professor of Genetics and Dr. K.R. Fouad, professor of Agric. Biochemistry, Agric. Fac., Ain Shams University, for their advices introduced during certain phases of this work.

CONTENTS

1.	Introd	uction.		1
2.	Review	of lit	erature	3
	2.1.	Macron	utrients	I
		2.1.1.	Period of absorption	4
		2.1.2.	Concentration of phosphate in	
			the absorption medium	7
		2.1.3.	pH of the uptake medium of roots	12
		2.1.4.	Accompanied ions	14
		2.1.5.	Anatomical structure of roots	15
		2.1.6.	Genetic structure of roots	21
	2.2.	Micron	trients	26
		2.2.1.	Period of absorption	27
		2.2.2.	Concentration of iron in	
			the absorption medium	28
		2.2.3.	pH of the uptake medium of roots	32
		2.2.4.	Accompanied ions	34
		2.2.5.	Anatomical structure of roots	36
		2.2.6.	Genetic structure of roots	38
3.	Materia	als and	methods	45
	3.1.	Evaluat	ion for kinetic parameters of	
		ion up	take by excised roots	45
	3.2.	Anatomi	cal studies for excised roots	47
	3.3.	Genetic	analyses	49
4.	Results	and di	scussion	51
	4.1.	Absorpt	ion of P by excised barley roots	51

4.1.1. Phosphate uptake as a function	
of absorption period	5
4.1.2. Phosphate uptake as a function	
of pH of absorption medium	5
4.1.3. Phosphate uptake as a function	
of presence of iron	57
4.1.4. Phosphate uptake as a function	
of P concentration in the	
absorption medium	60
4.2. Iron absorption	78
4.2.1. Absorption of Fe by excised	
barley roots from FeSO source	78
4.2.1.1. Iron uptake as a function	
of absorption period	78
4.2.1.2. Iron uptake as a function	
of presence of KH PO salt	81
2 4 4.2.1.3. Iron uptake as a function	
of Fe concentration in the	
absorption medium	85
4.2.2. Absorption of Fe by excised barley	
roots from Fe-EDDHA source	95
4.2.2.1. Iron uptake as a function	
of absorption period and	
pH value of uptake medium	96
4.2.2.2. Iron uptake as a function	
of presence of KH PO salt 2 4	98

	4.2.2.3. Iron uptake as a function	
	of Fe concentration in	
	the absorption medium	102
	4.3. Anatomical structure	115
	4.3.1. The effect of P absorption on	
	the anatomy of roots	124
	4.3.2. The effect of Fe absorption on	
	the anatomy of roots	126
	4.4. Hordein fractions of the two	
	studied barley genotypes	128
	4.4.1. The effect of P on hordein pattern	133
	4.4.2. The effect of Fe on hordein pattern	134
5.	Summary	135
	References	14:
	Arabic summary	

LIST OF TABLES

Table	(1): Kinetic parameters for phosphate uptake by	page
	excised barley (Giza 121 genotype) roots at various	
	pH values, absorption periods and concentration	
	ranges of KH PO .	65
Table	2 4 (2): Kinetic parameters for phosphate uptake by	
	excised barley (Sahrawy genotype) roots at various PH	
	values, absorption periods and concentration ranges	
	of KH PO . 2 4	73
Table	(3): Kinetic parameters for iron uptake by excised	
	barley (Gizia 121 genotype) roots at various	
	absorption periods and concentration ranges of FeSO , $_{ m 4}$	
	at the presence or absence of KH PO .	88
Table	(4): Kinetic parameters for iron uptake by excised	
	barley (Sahrawy genotype) roots at various absorption	
	periods and concentration ranges of FeSO ,at the	
	presence or absence of KH PO .	93
Table	den l	
	barley (Giza 121 genotype) roots at various pH	
	values, absorption periods and concentration ranges	
	of Fe-EDDHA.	107
Table	(6): Cortex area for 7-day roots of the two studied	
	genotypes (Giza 121 and Sahrawy).	123
Table	(7): Effect of applied phosphate level on the cortex	

area, expressed as radius, of different root zones

	for the two studied barley genotypes (Giza 121 and	bage
	Sahrawy).	125
Table	(8): Effect of applied iron level on the cortex area,	
	expressed as radius, of different root zones for the	
	two studied barley genotypes (Giza 121 and Sahrawy).	127

LIST OF FIGURES

Fig. [1]: Phosphate absorption by excised barley (Giza 121)	page
roots, subjected to different concentrations of	
applied KH PO salt with various pH values, at	
2 4 successive time intervals.	52
Fig. [2]: Phosphate absorption by excised barley (Sahrawy)	
roots, subjected to different concentrations of	
applied KH-PO salt with various pH values, at 2 4	56
successive time intervals.	70
Fig. [3]: Influence of iron, applied as FeSO salt, on the	
absorption of phosphate, from different	
concentrations of KH PO , by excised barley roots of $^\circ$ 4	
both Giza 121 and Sahrawy genotypes.	58
Fig. [4]: Response of phosphate absorption by excised barley	
(Giza 121) roots, to ion concentration in the	
absorption media with different pH values at	
successive time intervals.	61
Fig. [5]: Double reciprocal plot representing response of	
phosphate absorption by excised barley (Giza 121)	
roots, within different absorption periods (5 min up	
to 6 h) to ion concentration in the absorption media	
having different pH values.	64
Fig. [6]: Response of phosphate absorption by excised barley	
(Sahrawy) roots to ion concentration in the	
absorption media, with different pH values, at	

72

76

79

86

Fig. [7]: Double reciprocal plot representing response of phosphate absorption by excised barley (Sahrawy) roots, within different absorption periods (5 min up to 6 h) to ion concentration in the absorption media having different pH values.

Fig. [8]: Double reciprocal plot representing response of phosphate absorption by excised barley roots, for both Giza 121 and Sahrawy genotypes, within different absorption periods (5 min up to 3 h), to presence of FeSO in the absorption media having pH of 5.5.

Fig. [9]: Response of iron absorption from different concentrations of FeSO (pH 5.5) by excised barley roots, for both Giza 121 and Sahrawy genotypes, within different absorption periods (5 min up to 6 h).

Fig. [10]: Influence of 0.05 mM KH PO on the absorption of

2 4

iron, form different concentrations of FeSO, by

4

excised barley roots of both Giza 121 and Sahrawy

genotypes.

- Fig. E111: Response of iron absorption by excised barley roots of both Giza 121 and Sahrawy genotypes, to ion concentration in the absorption media, with different pH values, at successive time intervals.
- Fig. E12]: Double reciprocal plot representing response of iron absorption by excised barley roots of Giza 121

genotype, within different absorption periods, to ion	page
concentration in the absorption media at the presence	
or absence of KH PO .	87
Fig. [13]: Double reciprocal plot representing response of	
iron absorption by excised barley roots of Sahrawy	
genotype, within different absorption periods, to ion	
concentration in the absorption media at the presence	
or absence of KH PO .	92
Fig. [14]: Iron absorption, from different concentrations of	
Fe-EDDHA, by excised barley roots of Giza 121	
genotype within different absorption periods.	97
Fig. [15]: Iron absorption, from different concentrations of	
Fe-EDDHA, by excised barley roots of Sahrawy genotype	
within different absorption periods.	99
Fig. [16]: Influence of KH PD (0.1 and 1.0 mM) on the	
absorption of iron, from different concentrations of	
Fe-EDDHA, by excised barley roots of Giza 121	
genotype.	100
Fig. [17]: Influence of KH PO (0.1 and 1.0 mM) on the	
absorption of iron, from different concentrations of	
Fe-EDDHA, by excised barley roots of Sahrawy	
genotype.	103
Fig. [18]: Response of iron absorption by excised barley	
roots (Giza 121 genotype), to ion concentration in	
the absorption media having different pH values, at	
successive time intervals.	104

Fig. [19]: Double reciprocal plot representing response of	page
iron absorption by excised barley roots (Giza 121	
genotype), within different absorption periods, to	
ion concentration in the absorption media having	
different pH values.	106
Fig. [20]: Double reciprocal plot representing response of	
iron absorption by excised barley roots (Giza 121	
genotype), within diferent absorption periods, to ion	
concentration in the absorption media, having	
different pH values, at presence of KH FO .	110
Fig. [21]: Response of iron absorption by excised barley	
roots (Sahrawy genotype), to ion concentration in the	
absorption media, having different pH values, at	
successive time intervals.	112
Fig. [22]: Double reciprocal plot representing response of	
iron absorption by excised barley roots (Sahrawy	
genotype), within different absorption periods, to	
ion concentration in the absorption media having	
different pH values.	113
Fig. [23]: Double reciprocal plot representing response of	
iron absorption by excised barley roots (Sahrawy	
genotype), within diferent absorption periods, to ion	
concentration in the absorption media, having	
different pH values, at presence of KH PO .	114
Fig. [24]: Diagrammatic representation of hordein patterns,	
for both Giza 121 and Sahrawy barley genotypes,	