AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

POOL FILM BOILING HEAT TRANSFER

FROM HORIZONTAL SURFACES TO SATURATED LIQUIDS

by

Richard Jean Michel Messiha

A Thesis submitted for the degree of

Doctor of Philosophy

in Mechanical Engineering (Energy)

1 + 4 , 5 =

4.402

under the supervision of

Prof. Dr. Ahmed M. El-Sibaie

Prof. Dr. Samir M. Abd El-Ghani

Dr. Mohamed I. M. Salem

Energy and Automotive Engineering Department

CAIRO - 1988

Examiners Committee

- Prof. Dr. Graham Rice

 Energy Group, Department of Engineering

 University of Reading

 Reading England
- Prof. Dr. Monir M. Helal

 Mechanical Power Department

 Faculty of Engineering

 Cairo University
- Prof. Dr. Ahmed M. El-Sibaei

 Energy and Automotive Department

 Faculty of Engineering

 Ain Shams University
- Frof. Dr. Samir M. Abd El-Ghani
 Energy and Automotive Department
 Faculty of Engineering
 Ain Shams University

/ /1988

Declaration

I do hereby declare that this dessertation has not been submitted for a degree or qualification at any other University or Institution.

Richard Jean Michel Messiha

POOL FILM BOILING HEAT TRANSFER
FROM HORIZONTAL SURFACES TO SATURATED LIQUIDS

Τp

My wife Wafaa and daughter Carole

ACKNOWLEDGEMENTS

The author wishes to acknowledge with sincere thanks the help given to him by Profs., Dr. Ahmed M. El-Sibaíe and Dr. Samir M. Abd El-Ghani through their continued supervision, encouragement, and the facilities made available to him.

Again the author wishes to express his deep gratitude to Dr. Mohamed I. M. Salem for the suggestion of the problem, constant supervision, guidance, and discussions which were really invaluable.

The author feels gratefully indebted to Dr. George E. Abouseif, Ex-Assistant Professor of Mechanical Engineering, Thermofluids Division, Massachusetts Institute of Technology, Cambridge, Massachusetts, U. S. A., whose work on thermofluid instabilities has guided very much the author to attack the present subject.

The author thanks graciously Dr. Abd El-Aziz M. Abd El-Aziz, Lecturer, Energy and Automotive Engineering Department, Ain Shams University, who showed special interest and provided sincere help during the experimental work.

Finally, the author wishes to thank his wife for her patience, sacrifices, and encouragement.

ABSTRACT

A theoretical study was carried out to solve the governing equations for conservation of mass, momentum, and energy in the boundary layers of the vapour and saturated liquid during pool film boiling around an isothermal horizontal cylinder. The study took into consideration the radiation effects of both the heating surface and the vapour phase. The vapour phase was considered as a radiatively participating gas and the radiation transfer equation in its differential approximation form was solved together with the conservation equations. Numerical solutions were obtained for the velocity and temperature fields, and radiation heat flux at different circumferential positions of various tube diameters and for different wall emissivities. Thus the mean heat transfer coefficient was computed.

Linear stability analysis was done for the problem of the interfacial instability of the vapour and its saturated liquid taking into consideration the effects of heat and mass transfer on such instability. Results concerning the most dangerous wave length, most dangerous growth rate, and most dangerous physical frequency were obtained and analyzed. These results. conjunction with the undisturbed vapour film thickness, and the bubble energy and dynamical equations, were used to build a new model to predict the heat transfer coefficients on horizontal surfaces either flat or cylindrical. In order to test the validity of the model, a comparison was held between its results and the available experimental results of the author as well as those of the others. The comparison for different fluids showed a very good agreement, and revealed the generality, and the plausibility of the new model.

TABLES OF CONTENTS

		Page
LIST OF TAB	LES	i×
LIST OF ILL	USTRATIONS	×
NOMENCLATUR	E	×v
CHAPTER 1:	INTRODUCTION	1
CHAPTER 2:	LITERATURE SURVEY	7
	2.1 Introduction	7
	2.2 Theoretical Investigations	11
	2.3 Photographic Study	23
	2.4 Experimental Work	26
	2.5 Minimum Film Boiling Heat Flux	32
	2.6 Object of Present Investigation	37
CHAPTER 3:	ANALYSIS OF STABLE LAMINAR FILM BOILING	40
	3.1 Introduction	40
	3.2 Governing Equations	42
	3.3 Boundary and Matching Conditions	45
	3.4 Transformation of the Equations	50
	3.5 Numerical Solution	6 3
	3.6 Results and Discussion	74
CHAPTER 4:	STABILITY ANALYSIS OF FILM BOILING	111
	4.1 Introduction	111
	4.2 Governing Equations	112
	4.3 Derivation of the Disturbance Equations	114
	4.4 Application to the Stability of Film Boiling	119
	4.5 Solution of the Eigenvalue Problem	135
	4.6 Results and Discussion	1 77

		Page
CHARTER 5;	EXPERIMENTAL INVESTIGATION	188
	5.1 Introduction	188
	5.2 Electrically-Heated Equipment	189
	5.3 Gas-Fired Equipment	195
	5.4 Experimental Measurements Accuracy	201
CHAPTER 6:	CONCLUSION	204
REFERENCES	••••••	209
APPENDIX A:	GOVERNING EQUATIONS FOR STABLE FILM BOILING OF	
	SUBCOOLED LIQUID	216
AFFENDIX B:	INTERFACE GOVERNING EQUATIONS	218
APPENDIX C:	ON THE SOLUTION OF EQUATIONS (3-38)	220
APPENDIX D:	ADVANTAGES AND DISADVANTAGES OF THEORETICAL	
	CALCULATIONS	228
ARABIC ABSTE	RACT	234

LIST OF TABLES

Table		Page
2-1:	Summary of pool film boiling empirical correlations	27
3-1:	The functions a_z , b_z and c_z associated with Eq. (3-44)	67
4-1:	Values of $ \widetilde{u} = \overline{U}_1$, in m/s, predicted from the	
	inequality (4-89)	173
C-1:	Normed azimuth functions f_a and f_b as functions of the	
	azimuth angle 6	226

LIST OF ILLUSTRATIONS

Figure		Page
2-1:	Characteristic boiling curve	10
2-2:	Physical model of film boiling from horizontal plane	
	surface	15
2-3:	Plot of growth rate coefficient as a function of	
	wave number	17
2-4:	Geometrical detail of flow model for film boiling	
	from horizontal cylinder	21
2-5:	Effect of tube diameter on heat transfer coefficient	30
2-6:	Effect of heater radius upon the minimum film-	
	boiling heat-flux	38
3-1:	Physical model and coordinates system for film	
	boiling around horizontal cylinder	41
3-2:	Relation between the coordinates system and the	
	normal and tangent to the interface	47
3-3:	The functions ϕ and Y	60
3-4:	Three successive grid points used for Taylor-series	
	expansion	66
3-5:	Illustration of grid points near the solid boundary	
	and the interface	70
3-4:	Dimensionless tangential velocity profiles in the	
	water vapour film	75
3-7:	Ditto, but for methanol	76
3 -8:	Ditto, but for Freon-113	77
3 -9:	Dimensionless tangential velocity profiles in the	
	saturated liquid water layer	70

Figure		Page
3-10:	Ditto, but for methanol	80
3-11:	Ditto, but for Freon-113	81
3-12:	Dimensionless interfacial tangential velocity as	
	function of Kutateladze number	83
3-13:	Dimensionless mean velocity as function of	
	Kutateladze number	84
3-14:	Dimensionless vaporization rate as function of	
	Kutateladze number	86
3-15:	Dimensionless vapour film thickness as function of	
	Kutateladze number	87
3-16:	Dimensionless displacement thickness of the liquid	
	boundary-layer as function of Kutateladze number	88
3-17:	Dimensionless temperature distribution in the water	
	vapour film	90
3-18:	Ditto, but for methanol	91
3-19:	Ditto, but for Freon-113	92
3-20:	Dimensionless wall heat flux as function of	
	Kutateladze number	94
3-21:	Dimensionless wall temperature gradient as function	
	of Kutateladze number	95
3-22:	Ratios of energy of vaporization and superheating to	
	the wall heat transfer as function of Kutateladze	
	number	97
3-23:	Heat transfer coefficient for water during film	
	boiling on the outside of a horizontal cylinder	99
3-24:	Ditto, but for methanol	100
J-25:	Planck and Rosseland mean absorption coefficieents	
	of water vapour at p = 1 bar	103

Figure		Page
3-26:	Effect of radiation on the dimensionless vapour film	
	thickness at different values of Kutateladze number	106
3-27:	Effect of radiation on the dimensionless temperature	
	distribution in the water vapour film at $Ku = 0.7376$	107
3-28:	Effect of radiation on the mean Nusselt number, for	
	13 mm tube diameter	108
3-29:	Effect of the diameter of a black tube on the mean	
	Nusselt number	110
4-1:	The physical model considered	120
4-2:	Effect of heat and mass transfer on the variation of	
	$\Omega_{\hat{\mathbf{I}}}$ with K, for water at ΔT = 100 K	140
4-3:	Ditto, but at ΔT = 250 K	141
4-4:	Ditto, but at ΔT = 500 K	142
45:	Ditto, but for Freon-11 at $\Delta T = 90 \text{ K} \dots$	143
4-6:	Ditto, but at ΔT = 150 K	144
4-7:	Ditto, but at ΔT = 250 K	145
4-8։	Ditto, but for n-pentane at ΔT = 55 K	146
4-9:	Ditto, but at ΔT = 110 K	147
4-10:	Ditto, but at ΔT = 165 K	148
4-11:	Variation of $\Omega_{f d}$ with $ar{f \delta}$ taking heat and mass transfer	
	into account, for water	150
4-12:	Ditto, but for Freon-11	151
4-13:	Ditto, but for n-pentane	152
4-14:	Physical model for film boiling on a horizontal flat	
	surface	154
4-15:	Plot of q versus Ω_{d} for water, as calculated from	
	both Eqs. (4-83 & 84)	159
4-16:	Ditto, but for Freon-11	160

Figure		Fage
4-17:	Ditto, but for n-pentane	161
4-18:	Most dangerous wave length as function of ΔT	162
4-19:	Frequency of bubble release during film boiling as	
	function of ΔT	163
4-20:	Undisturbed vapour film thickness as function of AT	164
4-21:	Heat transfer coefficient for water during film	
	boiling on horizontal flat plate	167
4-22:	Ditto, but for Freon-11	169
4-23:	Ditto, but for n-pentane	16 9.
4-24:	Circumferential variation of K taking heat and mass	
	transfer into account, for Freon-113 at ΔT = 118 K .	175)
4-25:	Ditto, but at $\Delta T = 164 \text{ K}$	176
4-26:	Ditto, but at ΔT = 218 K	177
4-27:	Circumferential variation of $\Omega_{f i}$ taking heat and mass	
	transfer into account, for Freon-113 at ΔT = 118 K .	178
4-28:	Ditto, but at AT = 164 K	175
4-29:	Ditto, but at ΔT = 218 K	180.
4-30:	The integral involved in Eq. (4-90b)	3.8.1.
4-31:	Most dangerous physical frequency as function of AT	183
4-32:	Heat transfer coefficient for Freen-113 during film	İ
	boiling on the outside of a horizontal cylinder	187
5-1:	Schematic diagram of the electrically-heated heat	
	transfer equipment	19C
5-2:	Details of the test copper block and thermocouples	;
	positions	191
5-3:	Thermocouples circuit	193
5-4:	Nucleate-boiling heat flux of saturated water on a	1
	copper horizontal flat surface	196