
PRODUCTION AND EVALUATION OF SOME PRODUCTS PROCESSED FROM SOYBEANS

Ву

Ghada Mahmoud Khiralla Saad

B.Sc. (Food Science and Technology), Faculty of Agriculture, Ain Shams University, 1994

A thesis submitted in partial fulfillment

of

the requirements for the degree of

Master of Science

42205

in

6 (4.363)

Agriculture

(Food Science and Technology)

Department of Food Science

Faculty of Agriculture

Ain Shams University

1999

APPROVAL SHEET

PRODUCTION AND EVALUATION OF SOME PRODUCTS PROCESSED FROM SOYBEANS

By

Ghada Mahmoud Khiralla Saad

B.Sc. Food Science and Technology, 1994
Faculty of Agriculture, Ain Shams University.

This thesis for M. Sc. degree has been approved by:

Prof. Dr A. Y. Gibriel. W. U. D. Professor of Food Science Faculty of Agriculture, Ain Shams University.

Prof. Dr H. H. A. Khalaf. A. Khalaf.

Professor of Food Science Faculty of Agriculture,
Moshtohor, Zagazig University.

Prof. Dr. Nagwa M. H. Rasmy

Professor of Food Science Faculty of Agriculture,

Ain Shams University.

Date of examination: 2 \ 6 \ 1999

PRODUCTION AND EVALUATION OF SOME PRODUCTS PROCESSED FROM SOYBEANS

 $\mathbf{B}\mathbf{v}$

Ghada Mahmoud Khiralla Saad

B.Sc. (Food Science and Technology), Faculty of Agriculture, Ain Shams University, 1994

Under the supervision of

Prof.Dr. Nagwa Mousa Hassan Rasmy

Professor of Food Science, Faculty of Agriculture, Ain Shams University.

Dr. Manar Tawfek Ibrahim

Lecture of Food Science, Faculty of Agriculture, Ain Shams University.

Prof. Dr. Ahmed El-Said Basyony

Professor of Biochemistry, Dept. of Special Foods and Nutration. Food Tech. Institute, A.R.C.

ACKNOWLEGMENT

All praises are due to God, who blessed me with kind professors and colleagues, and gave me the support to produce this thesis.

I would like to express my deepest gratitude to Prof.

Dr Nagwa M.H. Rasmy, Professor of Food Science and
Technology Fac. Agric; Ain shams Univ. for her incessant
supervision, valuable help, plentiful advice and endless effort
provided for me to complete this work.

Great appreciation is also extended to **Prof. Dr A.E Basyony**, Professor of Biochemistry, Department of Special Foods and Nutrition. Food Technology Institute, A.R.C. for his supervision, encouragement and sincere support.

I wish also to express my gratitude to **Dr.Manar.T.I. Moysa** lecture of Food Science and Technology Fac. Agric.,

Ain shams Univ. for her supervision, help afford for completing my work, providing the necessary laboratory facilities and her irreplaceable encouragment.

I would like, also, to acknowledge Prof. Dr Yehia

Abd El-Razek Heikal Associate Prof. of Food Sci., Fac.

Agric., Ain shams Univ. for his valuable helps during viscosity measurments in this work. Thanks also extended to all members of the Food Sci. Dept., Fac. Agric. Ain Shams Univ.

Finally, special thanks are forwarded to Cairo MIRCEN (Microbiological Resource Center), Fac. Agric., Ain Shams Univ. for providing culture strains throughout this study.

ABSTRACT

Ghada Mahmoud Khiralia Saad. Production and evaluation of some products processed from soybeans. Unpublished Master of Science, University of Ain Shams, Faculty of Agriculture, Department of Food Science, 1999.

Autoclaving process at 121°C for 20 min of dehulled-soaked soybean seeds reduced Trypsin inhibitor activity, phytic acid and oligosaccharides content by 91.5, 6.94 and 74.1% respectively.

0.3 % of calcium chloride and 0.7 % of calcium sulfate as well as 3 % lemon juice (as a natural precipitating agent) were selected among different coagulating agents for tofu production as they recorded the highest yield and panel scores. Also, tofu prepared from soymilk of extraction ratio of 1: 5 (beans to water) was more accepted than those produced from extraction ratio of 1: 9. Higher levels of Ca salts were required to coagulate soymilk from autoclaved soybeans (treated tofu). Acid precipitated tofu was preferred by panelists over that precipitated with Ca Cl₂ and CaSO₄. Microbiological analysis, pH and titratable acidity measurements showed that immersed of tofu samples in sorbate solution (0.15% potassium sorbate +0.5%white vinegar) was extended the shelf life stability of tofu than immersed in pre-boiled water during storage at 5±1°C. Lemon juice precipitated untreated tofu (prepared from unautoclaved soybeans) had a shelf life stability extended to about 45 days, when packed in sorbate solution.

The effect of sugar type; glucose, fructose and sucrose at 1, 2 and 3 % levels on acid production of soyoghurt with Lactobacillus delbruekii ssp. bulgaricus (DSM 20080) +

Streptococus thermophilus (ATCC 1569) (YC), Bifidobacterium bifidum (ATCC 15696) + Lactobacillus acidophilus (ATCC 20552) (BC) and (YBC) which consisted of (YC) + (BC) at different inoculation rates were studied. More acid was produced and at a high rate in 2 % glucose-supplemented soymilk. However, 4 % of YC as well as YBC-fermented soyoghurt exhibited significantly greater titratable acidity values than BCfermented soy milk (P < 0.05). Soyoghurt with fortifiers, calcium gluconate + potassium citrate (CGS), Swiss whey (SWS) and sodium casinate (SCS) were compared for pH, acidity viscosity and sensory properties. SWS and SCS recorded the highest panel scores. The amount of acid produced in SWS and SCS yoghurt were 0.322 and 0.288 when fermented with 4 % YC and 0.322 and 0.261 with 4% YBC. The viscosity measurements of the product showed that SWS fermented with YBC were more viscous (i.e. 37.41 Dynes/cm².sⁿ) than unfortified soyoghurts (i.e. 10.51 Dynes/cm².sⁿ). Calcium fortified soyoghurt showed more synersis than unfortified soyoghurts. However, SWS showed relatively low values of synersis. The mean flavor scores for vanillin and strawberry-flavored soymilk yoghurt were higher significantly than unflavored soyoghurt. Fermentation of soymilk with YC in the presence of Bifidobacterium spp. was more affective for reducing oligosaccharide contents (40-44 %) than YC alone (15-17). Microbial spoilage of different soyoghurt samples was followed during storage at 5±1°C.

Key wards :-

Soybean, tofu (soy curd), soyoghurt, chemical composition, antinutraitional factors, trypsin inhibitor, oligosaccharides, phytic acid, microbiological quality, sensory evaluation, Lactic acid bacteria, Bifidobacteria, shelf life, viscosity.

i

Contents

LIST OF ABBREVIATIONS	V
LIST OF TABLES	Vii
LIST OF FIGURES	X
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	4
2-1 Soybeans (Glycine max L.) in human nutrition	4
2-1-1- Chemical composition	5
2-1-2- Some antinutritional factors	7
2-2-Soybean products	12
2-2-1-Tofu (Soy curd)	13
2-2-1-1- Processing methods	14
2-2-1-2-Types of tofu and their chemical	
composition	17
2-2-1-3-Factors affecting yield and quality	19
2-2-1-4- Microbiological quality and shelf life of	
tofu	22
2-2-1-5- Sensory evaluation of tofu	26
2-2-2- Soymilk-based yoghurt (Soyoghurt)	27
2-2-2-1- Production of soymilk-based yoghurt	28
2-2-2- Factors affecting acid production and	
soyoghourt quality.	31
2-2-2-1- Starter cultures.	31
a -Lactic acid bacteria (LAB)	32
b-Bifidobacteria	33
2-2-2-2- Carbohydrates	35
2-2-2-3- Total solids and calcium salts.	37
2-2-2-3- Physicochemical measurements and	
sensory evaluation	40

3.34	
3- MATERIALS AND METHODS	
3-1 MATERIALS	44
3-1-1 Soybean seeds	44
3-1-2 Bacterial strains	44
3-1-3 Tested media	44
3-1-3-1 Nutrient agar	44
3-1-3-2 MRS agar	44
3-1-3-3 Potato dextrose agar	45
3-1-3-4 Powder skim cow milk	45
3-1-4 Chemicals	46
3-2 METHODS	46
3-2-1 Preparation of soymilk	47
3-2-2 Soy curd (tofu) manufacture	47
3-2-2-1 Factors affecting yield and quality of tofu.	48
a- Coagulant agents and concentration	48
b- Beans to water ratio	48
c- Technological treatment	49
3-2-3 Soymilk-based yoghurt manufacture	49
3-2-3-1 Cultures	49
3-2-3-2 Fermentation process	49
3-2-3-3 Factors affecting acid production and	49
soyoghurt quality	
3-2-4 Physiochemical analysis	50
3-2-4-1 pH measurement	50
3-2-4-2 Titratable acidity	50
3-2-4-3 Moisture content	51
3-2-4-4 Total solids	51
3-2-4-5 Yield of tofu	51
3-2-4-6 Total Nitrogen	51
3-2-4-7 Crude Fat	51
3-2-4-8 Ash content	52
- o run content	52

3-2-4-9 Total carbohydrate	52
3-2-4-10 Trypsin inhibitor activity (TlA)	52
3-2-4-11 Phytic acid	53
3-2-4-12 Total oligosaccharides	55
3-2-4-13 Measurement and evaluation of	
rheological properties	56
3-2-4-14 Synersis index of soyoghurt	57
3-2-5 Microbiological analysis	57
3-2-5-1 Total plate count	58
3-2-5-2 Psychrotrophic count	58
3-2-5-3 Lactic acid bacteria	58
3-2-5-4 Yeast & mold	58
3-2-5-5Sporeforming bacteria	58
3-2-6 Sensory evaluation of soy bean products	58
3-2-7 Statistical analysis	59
4- RESULTS AND DISCUSSION	60
4-1- Chemical composition and some anti nutritional	
factors of soybean	60
4-2- Tofu (soy curd)	65
4-2-1 Yield and quality characteristics of tofu affected	
by:	65
4-2-1-1 Type and concentration of coagulants	65
4-2-1-2 Soybeans / water ratio	70
4-2-1-3- Heat treatment of soybean seeds	7 3
4-2-2- Sensory evaluation of cooked tofu	76
4-2-3- Chemical composition of tofu.	78
4-2-4-Shelf life stability of tofu (Soy curd)	83
4-2-4-1- Microbiological analysis	84
4-2-4-1-1- Total aerobic counts	84
4-2-4-1-2 Psychrotrophic counts	90
4-2-4-1-3- Lactic acid bacteria counts	97

4-2-4-1-4- Sporeforming bacteria	100
4-2-4-1-5 Yeasts and molds	102
4-2-4-2-Titratable acidity and pH values	105
4-2-4-3 Chemical composition of stored to 6.	109
4-3 Soymilk-based yoghurt (Soyoghurt)	115
4-3-1 Effect of carbohydrate source and starter culture	118
4-3-2 Effects of calcium and total solids fortifications	118
of soyoghurt on:	
4-3-2-1 Acid production	134
4-3-2-2 Rehological properties of soyoghurt	135
4-3-2-2-1- Description of flow behavior	139
4-3-2-2- Effect of fermentation time and	139
fortification on consists	
fortification on consistency coefficient value of soyoghurt	
4-3-2-2-3-Apparent viscosity	139
4-3-2-2-4-Thixotropic behavior of fermented	144
soyoghurt some soyoghurt	
4-3-2-3 Synersis:	144
4-3-2-4- Sensory properties:	145
4-3-3 Improvement of sensory properties of soymilk-	147
based yoghurt	
4-3-4- Chemical and migrobial	149
4-3-4- Chemical and microbiological properties of soymilk-based yoghurt	
4-3-4-1- Chemical properties	154
4-3-4-2-Microbiological properties	154
5- SUMMARY AND CONCLUSION	161
6- REFERENECES	164
7- ARABJC SUMMARY	172
-4,0 comment	