STUDIES ON ABSORPTION OF SOME MINERAL ELEMENTS AND BIOCHEMICAL COMPONENTS OF SUGAR BEET PLANTS UNDER CONDITIONS OF POTASSIUM FERTILIZATION

 $\mathbf{B}\mathbf{y}$

Wagida Zakaria Hassan

A thesis submitted in partial fulfilment

of the requirements for the degree of

Master of Science

ln

681.83 W.Z Agriculture

(Soil Science)

Soils Department Faculty of Agriculture Ain Shams University

u8134

1994

APPROVAL SHEET

STUDIES ON ABSORPTION OF SOME MINERAL ELEMENTS AND BIOCHEMICAL COMPONENTS OF SUGAR BEET PLANTS UNDER CONDITIONS OF POTASSIUM FERTILIZATION

Вy

Wagida Zakaria Hassan B.Sc. Agric., (Soils) Ain Shams University, (1986)

This thesis for M.Sc. degree has been approved by:

Prof. Dr. Sadik, M.K.
Prof. of Soils, Fac. of Agric.

MKSade

Prof. Dr. Shama, A.E.
Prof. of Biochemistry, Fac. of Agric.
Ain Shams Univ.

AT. Samon

Prof. Dr. El-Leboudi, A.E. Head of Soils Dept., Fac. of Agric. Ain Shams Univ. P. Com

Date of examination: / /1994

STUDIES ON ABSORPTION OF SOME MINERAL ELEMENTS AND BIOCHEMICAL COMPONENTS OF SUGAR BEET PLANTS UNDER CONDITIONS OF POTASSIUM FERTILIZATION

Ву

Wagida Zakaria Hassan B.Sc. (Soil Sci.), Ain Shams University, 1986

Under the supervision of:

Prof. Dr. Adel El-Sayed El-Leboudi Head of Soils Dept., Fac. of Agric., Ain Shams Univ.

Prof. Dr. Zakaria Ahmad El-Hadidy Prof. of Biochemistry, Faculty of Agric., Ain Shams Univ.

Dr. Ismail Mohamed Elwan Lecturer of Soils, Faculty of Agric. Ain Shams Univ.

ABSTRACT

Three pot experiments were carried out to evaluate the effect of fertilization along with mycorrhizal inoculation on growth and yield as well as nutritional status and some biochemical constituents of sugar-beet plants.

Obtained data indicated that, fertilization with nitrogen, phosphorus or potassium usually increased the dry matter content of studied plants and their nutrient uptake as well as carbohydrates status, the effect being dependent on both source and rate of applied fertilizer with growth stage being also effective. Different trend was obtained with mycorrhizal inoculation which seemed to be hazardous for studied sugar beet plants particularly what concerning sucrose of roots; again, effect was relatively dependent on source and rate of applied fertilizer as well as growth stage of concerned plants.

Finally, it may be worth to mention that invertase enzyme appeared to be almost not affected with either fertilization system or mycorrhizal inoculation. Of course, such trend may be a resultant of several factors dealing with metabolic activities within different plant tissues.

منتصير

KEY WORDS

Sugar beet plants
Nitrogen fertilization
Phosphorus fertilization
Potassium fertilization
Plant growth
Pigments
Reducing sugars
Sucrose
Total soluble sugars
Total carbohydrates

N-status in plants P-status in plants

K-status in plants

ACKNOWLEDGEMENT

The authoress wishes to express her appreciation and deepest gratitude to Dr. A.E. El-Leboudi, Professor and Head of Soils Department, Faculty of Agriculture, Ain Shams University, Dr. Z.A. El-hadidy, Professor of Biochemistry, Faculty of Agriculture, Ain Shams University and Dr. Ismail M. Elwan, Lecturer of Soils, Faculty of Agriculture, Ain Shams University for their close supervision, guidance and continuous encouragement throughout the investigation period and valuable help in accomplishing the study as well as for their helpful personal advice.

Thanks are also extended to all members of the central lab and Soils Department, Faculty of Agriculture, Ain Shams University, for Sincere help in providing all needed facilities.

Special gratitudes are also extended to the authoress parents for their patience and kindness; such gratitudes are also due for her colleagues for their help and encouragement.

CONTENTS

	•	Page
1.	INTRODUCTION	. 1
2.	REVIEW OF LITERATURE	. 4
	2.1. Fertilization	. 4
	2.1.1. Plant growth, nutritional status and	
	carbohydrate metabolism	. 4
	2.1.1.1. Nitrogen fertilization	. 4
	2.1.1.2. Phosphorus fertilization	. 8
	2.1.1.3. Potassium fertilization	. 10
	2.1.2. Pigments and enzymes	13
	2.1.2.1. Pigments	. 14
	2.1.2.2. Enzymes	. 16
	2.2. Mycorrhizal inoculation	. 17
	2.2.1. Plant growth, nutritional status and	
	carbohydrate metabolism	17
	2.2.2. Pigments and enzymes	27
Э.	MATERIALS AND METHODS	28
	3.1. Experimentation	28
	3.2. Plant sampling	30
	3.3. Chemical analysis of plant samples	31
	3.3.1. Photosynthetic pigments	31
	3.3.2. Activity of invertase enzyme	32
	3.3.3. Carbohydrate fractions	32
	3.3.4. Elements N. P and K	33

CONTENTS (Cont'd.)

			Page
4.	RESU	LTS AND DISCUSSION	34
	4.1.	Effect of nitrogen fertilization and VAM	
		inoculation on behaviour of sugar beet plant.	34
		4.1.1. Dry matter	34
		4.1.2. Photosynthetic pigments	40
		4.1.3. Carbohydrate fractions	42
		a- Reducing sugars	42
		b- Sucrose	45
		c- Total soluble sugars	48
		d- total carbohydrates	51
		4.1.4. Acid invertase enzyme	53
		4.1.5. Nutritional status	54
		4.1.5.1. Nutrient content	54
		a- Nitrogen	56
		b- Phosphorus	57
		c- Potassium	58
		4.1.5.2. Nutrient uptake	58
		a- Nitrogen	58
		b- Phosphorus	60
		c- Potassium	61
	4.2.	Effect of phosphorus fertilization and VAM	
		inoculation on behaviour of sugar beet	
		plant	68
		4.2.1. Dry matter	68
		4.2.2. Photosynthetic pigments	73
	-	4.2.3. Carbohydrates fractions	75
		a- Reducing sugars	75
		b- Sucrose	77
		c- Total soluble sugars	79
		d- total carbohydrates	81

CONTENTS (Cont'd.)

				Page
	4.2.4.	Acid inv	ertase enzyme	83
	4.2.5.	Nutritio	nal status	84
		4.2.5.1.	Nutrients content	84
			a- Nitrogen	84
			b- Phosphorus	86
			c- Potassium	87
		4.2.5.2.	Nutrients uptake	87
			a- Nitrogen	87
			b- Phosphorus	89
			c- Potassium	90
4.3.	Effect	of potas:	sium fertilization and VAM	
	inocul	ation on 1	behaviour of sugar beet	
	plants			92
	4.3.1.	Dry matte	er	92
	4.3.2.	Photosyn	thetic pigments	96
	4.3.3.	Carbohydi	rates fractions	98
		a- Reduc	ing sugars	98
		b- Sucros	se	101
		c- Total	soluble sugars	103
		d- total	carbohydrates	105
			ertase enzyme	107
	4.3.5.		nal status	108
		4.3.5.1.	Nutrients content	108
			a- Nitrogen	108
			b- Phosphorus	110
			c- Potassium	111
		4.3.5.2.	Nutrients uptake	111
			a- Nitrogen	111
			b- Phosphorus	113
			c- Potassium	113

CONTENTS (Cont'd.)

		Page
5.	SUMMARY	117
6.	REFERENCES	126
	ARABIC SUMMARY.	

LIST OF TABLES

No.		Page
1	Some physical and chemical properties of the selected soil	29
2	Effect of nitrogen fertilization and VAM (M) inoculation on the dry matter content (g/plant) of both shoot and root of sugar beet plants	35
3	Effect of nitrogen fertilization and VAM (M) inoculation on the pigments content (mg/g dry matter)of sugar beet plantsafter 60 days from planting	41
4	Effect of nitrogen fertilization and VAM (M) inoculation on the percentage of reducing sugars (on dry weight basis) in sugar beet plants	43
5	Effect of nitrogen fertilization and VAM (M) inoculation on the sucrose percentage (on dry weight basis) of sugar beet plants	46
6	Effect of nitrogen fertilization and VAM (M) inoculation on the percentage of total soluble sugars (on dry weight basis) in sugar beet plants	49
7	Effect of nitrogen fertilization and VAM (M) inoculation on the percentage of total carbohydrates (on dry weight basis) in sugar beet plants	52
8	Effect of nitrogen fertilization and VAM (M) inoculation on the content of N, P and K (on dry weight basis) in sugar beet plants.	55
9	Effect of nitrogen fertilization and VAM (M) inoculation on the uptake of N, P and K (mg/plant) by sugar beet plants	59
	(mg/press) -/ paget Door Diditol	

LIST OF TABLES (Cont'd.)

Table No.		Pag
10	Effect of phosphorus fertilization and VAM (M) inoculation on the dry matter conent (g/plant) of both shoot and root of sugar beet plants	69
11	Effect of phosphorus fertilization and VAM (M) inoculation on the pigments content (mg/g dry matter) of sugar beet after 60 days from planting	74
12	Effect of phosphorus fertilization and VAM (M) inoculation on the percentage of reducing sugars (on dry wegith basis) in sugar beet plants	76
13	Effect of phosphorus fertilization and VAM (M) inoculation on the sucrose percentage (on dry weight basis) of sugar beet plants	78
14	Effect of phosphorus fertilization and VAM (M) inoculation on the percentage of total soluble sugars (on dry weight basis) in sugar beet plants	80
15	Effect of phosphorus fertilization and VAM (M) inoculation on the percentage of total carbohydrates (on dry weight basis) in sugar beet plants	82
16	Effect of phosphorus fertilization and VAM (M) inoculation on the content of N. P and K (on dry weight basis) in sugar beet plants.	85
17	Effect of phosphorus fertilization and VAM (M) inoculation on the uptake of N, P and K (mg/plant) by sugar beet plants	88
18	Effect of potassium fertilization and VAM (M) inoculation on the dry matter content (g/plant) of both shoot and root of sugar beet plants	93

LIST OF TABLES (Cont'd.)

Table No.		Page
19	Effect of potassium fertilization and VAM (M) inoculation on the pigments content (mg/g dry matter) of sugar beetplants	9 7
20	Effect of potassium fertilization and VAM (M) inoculation on the percentage of reducing sugars (on dry weight basis) in sugar beet plants	9 9
21	Effect of potassium fertilization and VAM (M) inoculation on the sucrose percentage (on dry weight basis) of sugar beet plants.	102
22	Effect of potassium fertilization and VAM (M) inoculation on the percentage of total soluble sugars (on dry weight basis) in sugar beet plants	104
23	Effect of potassium fertilization and VAM (M) inoculation on the percentage of total carbohydrates (on dry weight basis) in sugar beet plants	106
24	Effect of potassium fertilization and VAM (M) inoculation on the content of N, P and K (on dry weight basis) in sugar beet plants	. 108
25	Effect of potassium fertilization and VAM (M) inoculation on the uptake of N, P and K (mg/plant) by sugar beet plants	112

1. INTRODUCTION

Sugar-beet represents one of the sugar crops expected to be greatly economical in Egypt. This crop is known to be affected by several factors one of which is fertilization practice particularly what concerning potassium which is well-known to be a nutrient having roles in synthesis and translocation of carbohydrates. In fact, sugar beet is classified as a plant that has a high requirement for potassium; more potassium is usually absorbed by sugar beet than any other mineral nutrient element.

More nitrogen is usually required by plants than for any of the other essential mineral nutrients. It is an essential constituent for several metabolities including proteins, amides, amino acids along with nucleic acids as well as chlorophyll.

Phosphorus is one of the essential nutrients present in the plant both in inorganic form and in organic combinations. Inorganic phosphate is found in sugar beet at a concentration of about 60 percent of the total phosphorus in the harvested roots and about 40 percent of the totalphosphorus in leaf blades. The organic compounds that contain phosphorus include several metabilities such