STUDIES ON CONTROLLING SALT ACCUMULATION UNDER DRIP IRRIGATION SYSTEM

Вγ

SALEM ELAZAB ABDALLAH EL-MAGHRABY

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science
(Soil Science)

Department Of Soils

Faculty Of Agriculture

Ain Shams University

(1992)

APPROVAL SHEET

STUDIES ON CONTROLLING SALT ACCUMULATION UNDER DRIP IRRIGATION SYSTEM

BY

SALEM ELAZAB ABDALLAH EL-MAGHRABY

B.Sc. Agric. (Soils) Fac. Agric. Al-Azhar Univ. (1977) M.Sc. Agric. (Soils) Fac. Agric. Ain Shams Univ. (1988)

This thesis for Ph.D. degree has been approved by:

Prof. Dr. M.A. El-Kadi

merkeeli

Professor of Soil Science and Vice President of Desert Research Center.

Prof. Dr. A.M. El-Gindy

Professor of Agricultural Engineering, Department of Agricultural Mechanization, Faculty of Agriculture, Ain Shams University.

Prof. Dr. A. M. Elgala

Professor of Soil Science, Department of Soils, Faculty of Agriculture, Ain Shams University (Supervisor). A-Migala

Date of examination: 29 / 7 / 1992.

STUDIES ON CONTROLLING SALT ACCUMULATION UNDER DRIP IRRIGATION SYSTEM

Вy

SALEM ELAZAB ABDALLAH EL-MAGHRABY
B.Sc. Agric. (Soils) Fac. Agric. Al Azhar Univ. (1977)
M.Sc. Agric. (Soils) Fac. Agric. Ain Shams Univ. (1988)

Under the Supervision of:

Prof.Dr. A.M. Elgala

Professor of Soils, Ain Shams Univ.

Prof.Dr. M.A. Mostafa

Professor of Soils, Ain Shams Univ.

Prof.Dr. M.M. Wassif

Professor of Soils, Desert Research Center
ABSTRACT

Two experiments were carried out, i.e., lab and field experiments in order to study the salt distribution pattern under drip and submersion irrigation systems and how to control salt accumulation under drip irrigation system by using some natural and synthetic soil amendments. Results of lab experiment indicate that the EC values were clearly increased in the upper soil segments when saline water was added through drip technique to both sandy and clay soils. However, opposite trends were obtained under the other method of water application, i.e. submersion application.

On the other hand, the distribution pattern of certain ions (Ca++, Mg++, Na+, K+, Cl-, HCO $_3$ - and SO $_4$ -) as affected by salinity levels of the applied water under drip and submersion techniques was studied.

Results of field experiments include the effects of the application of sulphur, bentonite, PAM, bitumen, plastic sheets and town refuse (either mixed with the upper 30 cm layer, half mixed + half surface mulch, or banded at 30 cm depth) on the soil pH values, soil salinity values, SAR values, the distribution of soluble Ca++, Mg++, Na+, K+, Cl-, HCO₃- and SO₄-- (in both lateral and vertical directions), as well as yield, total soluble solids (TSS) in fruits, water use efficiency for both tomato and sweet ananas plants grown under drip irrigation system for two separate seasons.

The economic evaluation of the used soil amendments was taken into consideration for both tomato and sweet ananas crops grown on sandy soil under drip irrigation system.

ACKNOWLEDGEMENT

The author wishes to express his sincerest gratitude and appreciation to Prof. Dr. A.M. Elgala, professor of Soils, Soils Department, Faculty of Agriculture, Ain Shams University for being the major professor of this work, suggesting the problem, continuous guidance, patience and encouragement, and valuable help in accomplishing this work.

The author wishes also to express his sincere gratitude to Prof. Dr. M.A. Mostafa, professor of Soils, Soils Department, Faculty of Agriculture, Ain Shams University for his supervision, valuable guidance and keen help in accomplishing this work.

The author is also indebted to Prof. Dr. M.M. Wassif, professor of Soils, Soil Conservation and Water Resources Department, Desert Research Center, for his supervision, constant guidance, advice throughout the whole stage of this investigation and deep interest in this study.

Thanks are forwarded to all staff members of Soil Conservation and Water Resources Department, Desert Research Center for useful help and cooperation during this work.

Thanks are also to Dr. M.A.O. El-Sharawy, Lecturer of Soils, Soils Department, Faculty of Agriculture, Ain Shams University for his fruitful cooperation and useful help in this study.

Contents

N	0.	Title	Page
1	Int	roduction	1
2	Rev	iew of Literature	4
	2-1	Advantages of the drip irrigation system	
	2-2		
	2-3		
	2-4		
		irrigation system	10
	2-5	Application of nutrients through drip	
		irrigation system	12
	2-6	Out look for soil conditioners	15
	2-7	Effect of soil conditioners on some soil	10
		properties	16
		2-7-1 Effect on soil physical properties	16
		2-7-2 Effect on soil chemical properties	
		2-7-2-1 Soil pH values	18
			18
			19
3	Mata	ions	20
3		rials and Methods	22
	3-1	Laboratory experiment	22
		3-1-1 Preparation of the soil columns	22
	3-2	Field experiments	25
		3-2-1 Location	25

No	•		Title	Page
		3-2-2	Treatments and experimental design	25
			3-2-2-1 Tomato experiment	25
			3-2-2-2 Sweet ananas experiment	31
	3-3	Method	s of analyses	31
4	Resu	lts and	Discussion	34
	4-1	Labora	tory experiment	34
		4-1-1	Salt distribution pattern throughout	
			soil columns	34
		4-1-2	Distribution pattern of soluble ions	
			throughout soil columns	39
	4-2	Field	experiments	63
		4-2-1	Soil reaction	63
		4-2-2	Salt distribution	69
		4-2-3	Distribution of soluble cations	78
			4-2-3-1 Soluble calcium + magnesium	78
			4-2-3-2 Soluble Na+	85
			4-2-3-3 SAR values	92
			4-2-3-4 Soluble K+	96
		4-2-4	Distribution of soluble anions	103
			4-2-4-1 Soluble C1	103
			4-2-4-2 Soluble HCO3	110
			4-2-4-3 Soluble SO4	117
		4-2-5	Effect of adding soil amendments on the	
			yields of plants grown on sandy soil	

No.	Title	Page
	under drip irrigation system	123
	4 -2-5-1 Tomato yield	123
	4-2-5-2 Sweet ananas yield	129
	4-2-6 Total soluble solids (TSS)	132
	4-2-7 Water use efficiency (WUE)	135
	4-2-8 Economic evaluation of the used soil	
	amendments	139
5	Summary	143
6	References	151
7	Arabic summary	

List of Tables

No.	Title	Page
1	Some physical and chemical properties of the	
	studied soils in the laboratory experiment	24
2	Chemical composition of saline water used in the	
	laboratory experiment	24
3	Some physical and chemical properties of the	
	investigated soil used in experiments	26
4	Chemical composition of the saline well water used	
	in irrigation	27
5	Some physical and chemical properties of El-Fayoum	
	bentonite	30
6	Some chemical properties of the town refuse used in	
	the field experiment	30
7	Salt distribution pattern throughout soil columns	
	as affected by soil type and salinity levels of the	
	applied water under different application systems	35
8	Distribution pattern of soluble (Ca'') throughout	
	soil columns as affected by soil type and salinity	
	levels of the applied water under different	
	application systems	42
9	Distribution pattern of soluble (Mg++) throughout	
	soil columns as affected by soil type and salinity	
	levels of the applied water under different	
	application systems	45

No.	Title	Page
10	Distribution pattern of soluble (Na·) throughout	
	soil columns as affected by soil type and salinity	
	levels of the applied water under different	
	application systems	48
11	Distribution pattern of soluble (K+) throughout soil	ļ.
	columns as affected by soil type and salinity levels	3
	of the applied water under different application	
	systems	51
12	Distribution pattern of soluble (Cl-) throughout	
	soil columns as affected by soil type and salinity	
	levels of the applied water under different	
	application systems	54
13	Distribution pattern of soluble (HCO3-) throughout	
	soil columns as affected by soil type and salinity	
	levels of the applied water under different	
	application systems	57
14	Distribution pattern of soluble $(SO_4^{})$ throughout	
	soil columns as affected by soil type and salinity	
	levels of the applied water under different	
	application systems	60
15	Soil pH values throughout the soil as affected by	
	adding soil amendments to plant crops grown under	
	drip irrigation system	64

NO.	Title	Page
16	Salt distribution throughout the soil as affected	
	by adding soil amendments to plant crops grown	
	under drip irrigation system	70
17	Distribution of soluble (Ca++ Mg++) throughout	
	the soil as affected by adding soil amendments to	
	plant crops grown under drip irrigation system	79
18	Distribution of soluble (Na+) throughout the soil	
	as affected by adding soil amendments to plant	
	crops grown under drip irrigation system	86
19	SAR values throughout the soil as affected by	
	adding soil amendments to plant crops grown under	
	drip irrigation system	93
20	Distribution of soluble $(K^{\scriptscriptstyle +})$ throughout the soil as	
	affected by adding soil amendments to plant crops	
	grown under drip irrigation system	98
21	Distribution of soluble (Cl-) throughout the soil	
	as affected by adding soil amendments to plant	
	crops grown under drip irrigation system	104
22	Distribution of soluble $(HCO_{\mathfrak{F}^-})$ throughout the soil	
	as affected by adding soil amendments to plant	
	crops grown under drip irrigation system	111
23	Distribution of soluble $(504^{})$ throughout the soil	
	as affected by adding soil amendments to plant	
	crops grown under drip irrigation system	118

No.	Title	Page
24	Effect of adding soil amendments on the yield of	
	tomato plants grown on sandy soil under drip	
	irrigation system	124
25	Effect of adding soil amendments on the yield of	
	sweet ananas crop grown on sandy soil under	
	drip irrigation system	130
26	Total soluble solids (TSS) in fruit juice and water	
	use efficiency of tomato and sweet ananas as	
	affected by adding soil amendments under drip	
	irrigation system	133
27	Economic evaluation towards the used soil	
	amendments	141

List of Figures

No.	Title	Page
1	Salt distribution pattern throughout sandy and clay soil columns under drip technique	36
2	Salt distribution pattern throughout sandy and clay soil columns under submersion technique	37
3	Distribution pattern of soluble Ca++ throughout sandy and clay soil columns under drip technique	43
4	Distribution pattern of soluble Ca++ throughout sandy and clay soil columns under submersion technique	44
5	Distribution pattern of soluble Mg++ throughout sandy and clay soil columns under drip technique	4 6
6	Distribution pattern of soluble Mg++ throughout sandy and clay soil columns under submersion technique	47
7	Distribution pattern of soluble Na+ throughout sandy and clay soil columns under drip technique	49
8	Distribution pattern of soluble Na+ throughout sandy and clay soil columns under submersion technique	50
9	Distribution pattern of soluble K+ throughout sandy and clay soil columns under drip technique	52
10	Distribution pattern of soluble K throughout sandy and clay soil columns under submersion technique	53
11	Distribution pattern of soluble C1- throughout sandy and clay soil columns under drip technique	55
12	Distribution pattern of soluble C1- throughout sandy and clay soil columns under submersion technique	56
13	Distribution pattern of soluble HCO3 throughout sandy and clay soil columns under drip technique	58
14	Distribution pattern of soluble HCO ₃ throughout sandy and clay soil columns under submersion	

	technique	59
15	Distribution pattern of soluble SO ₄ - throughout sandy and clay soil columns under drip technique	61
16	Distribution pattern of soluble $SO_4^{}$ throughout sandy and clay soil columns under submersion technique	62
17	Soil pH values as affected by adding soil amendments to tomato crop	65
18	Soil pH values as affected by adding soil amendments to sweet ananas crop	66
19	Salt distribution in soil as affected by adding soil amendments to tomato crop	71
20	Salt distribution in soil as affected by adding soil amendments to sweet ananas crop	72
21	Salt movement in both lateral and vertical directions under different soil amendments	77
22	Distribution of soluble Ca++ + Mg++ in soil as affected by adding soil amendments to tomato crop.	80
23	Distribution of soluble Ca++ Mg++ in soil as affected by adding soil amendments to sweet ananas crop	81
24	Distribution of soluble Na+ in soil as affected by adding soil amendments to tomato crop	87
25	Distribution of soluble Ma+ in soil as affected by adding soil amendments to sweet ananas crop	88
26	SAR values as affected by adding soil amendments to tomato crop	94
27	SAR values as affected by adding soil amendments to sweet ananas crop	95
28	Distribution of soluble K+ in soil as affected by adding soil amendments to tomato crop	99
29	Distribution of soluble K+ in soil as affected by adding soil amendments to sweet ananas crop	100