TOXICITY OF CERTAIN HEAVY METALS

BY

SAID ABD EL-MONIEM HASSAN

A thesis submitted in partial fulfillment
of
the requirements for the degree of
DOCTOR OF PHILOSOPHY

In Agricultural Science (Soils)

1. 1.

Department of Soil Faculty of Agriculture Ain Shams University

Approval Sheet

TOXICITY OF CERTAIN HEAVY METALS

Ву

Said Abd El-Moniem Hassan

B.Sc. Soil Science, Faculty of Agriculture,
Al-Azhar University, 1975

M.Sc. Soil Science, Faculty of Agriculture,
Ain-Shams University, 1986

This Thesis for Ph.D. degree has been approved By:

Date of examination : $/\psi/\ell\lambda/1994$

TOXICITY OF CERTAIN HEAVY METALS By

Said Abd El-Moniem Hassan

B.Sc. Soil Science, Faculty of Agriculture,
 Al-Azhar University, 1975
 M.Sc. Soil Science, Faculty of Agriculture,
 Ain Shams University, 1986

Under the supervision of :

Prof. Dr. A.I. Metwally Professor of Soil Science & Fac. of Agric., Ain Shams University

> Prof. Dr. Akila Saleh Hamza Professor of Food Science and Director of Central Lab. for Food and Feed, Ministry of Agriculture

Dr. H. E. Abu Hussin
Soil Department
Fac. of Agric., Ain Shams University

ABSTRACT

The objectives of this study were to, assess and evaluate the status of Cd and Pb in water, soil and different crops in waste water irrigated area of Bahr El-Bagar. Also to study the uptake, translocation and accumulation of these heavy metals in different plant parts of different crop plants and their effect on amino acid metabolism in addition to their genotoxic effects. The content of Cd and Pb largely varied in different crops and were highest in roots than in shoots, least in grains and pods and increased with the duration of irrigation with waste water. Cadmium adversely affected bean and spinach plants at lower concentrations in the nutrient media than Pb and spinach growth was more affected than beans specially at latter stages of growth. The accumulation of both metals was higher in bean roots and spinach shoots. Data indicate that plants whose roots can act as a barrier for heavy metal translocation tolerate higher concentrations of heavy metals in the nutrient media. Both plants accumulated such high concentrations of both Cd and Pb before growth was adversely affected. These concentrations reached 196, 76 and 60 ppm Cd and 780, 72 and 48 ppm Pb in roots, stems and leaves of beans respectively and 45 and 28 ppm Cd and 221 and 128 ppm Pb in roots and shoots in spinach.

The amino acid content (THR, SER, GLU, ALA, VAL, ILE, LEU, TYR, PHE, HIS, LYS, CYE, MeTH) and also true protein content of bean pods progressively decreased by increasing Cd or Pb concentrations. Aspartic acid, arginine and non-

protein nitrogen, on the other hand, increased as Cd and Pb increased in the nutrient media. Data indicated that both heavy metals adversely affected protein synthesis in plant.

Genotoxic effect of Cd and Pb in Vicia faba was studied by examining the chromosome behaviour in the root tip and pollen mother cells as affected by increasing Cd and Pb concentrations in the nutrient media. Generally, the percentage of various aberrations increased with increasing Cd and Pb levels in mitotic and meiotic systems progressively. More work is needed to evaluate the mutagenic effect of these heavy metals at various concentrations.

<u>Key words</u>: Cadmium, lead, Vicia faba, bean, Spinacia oleracea, spinach, uptake, accumulation, translocation, toxicity.

ACKNOWLEDGEMENT

The author wishes to express his deep appreciation and gratitude to Prof. Dr. A.I. Metwally, Professor of Soil Science, Fac. of Agric., Ain-Shams Univ., for his supervision, fruitful discussion and valuable help offered during writting of this manuscript.

My sincere thanks to Prof. Dr. M.S. Foda, Professor of Soil Science, Fac. of Agric., Ain-Shams Univ. for suggesting the problem, encouragement and valuable criticism throughout the laboratorial and field work.

My special thanks to Prof. Dr. Akila S. Hamza, The Director of the Central Lab. for food and Feed for her cooperation, encouragement and providing all facilities necessary for the completion of this work.

I am grateful also to Dr. H.E. Abu-Hussin, Soil Department, Fac. of Agric., Ain-Shams Univ. for his help throughout the preparation of this manuscript.

Thanks are also due to Dr. M.Z. Attalah, Researcher of Genetics, Agric., Researcher Centre, Alex. for his help in mutagenic analysis and preparation of this part in manuscript.

CONTENTS

			Page
1.	INTRO	DDUCTION	1
2.	REVIE	W OF LITERATURE	4
	2.1.	The presence of Cd and Pb	4
	2.2.	Absorption and Translocation of Cd and Pb	
		in plant	16
	2.3.	Toxicity and biological effects of Cd	
		and Pb	24
	2.4.	Genotoxic effect of Cd and Pb	29
з.	MATER	RIALS AND METHODS	33
	3.1.	Uptake, translocation and accumultation of	
		Cd and Pb in bean and spinach plants as	
		affected by heavy metal concentration in	
		sand culture	33
		3.1.2. Effect of Cd or Pb in nutrient solu-	
		tion on the amino acid, true protein	
		and non protein nitrogen content of	
		bean pods	34
		3.1.3. Genotoxiceffect of Cd and Pb	35
	3.2.	Assessment of Cd and Pb levels in soil,	
		irrigation water and growing plants in	
		Bahr El-Bagar area	37
	3.3.	Accumulation and distribution of Cd and Pb	
		in bean and spinach plants cultivated in	
		two selected locations of Rahr El-Ragar area	39

	Page
3.4. Method of analysis :	
3.4.1. Soil analysis	39
3.4.2. Plant analysis	40
3.4.3. Watar analysis	44
4 RESULTS AND DISCUSSION	45
4.1. Uptake, translocation and accumulation of	
Cd and Pb in bean and spinach plants as	
affected by heavy metal concentration in	
sand culture	45
4.1.1. Response of bean plants to increasing	
Cd and Pb concentrations in nutrient	
solution	45
4.1.1.1. Plant growth	45
4.1.1.2. Contents of Cd and Pb in bean plant.	54
4.1.1.3. Effect of Cd or Pb in nutrient	
solution on the amino acid, true	
protein and non protein nitrogen	
content of bean pods	65
4.1.1.4. Genotoxic effect of Cd and Pb	73
4.1.2. Response of spinach plants to increa-	
sing Cd or Pb concentration in the	
nutrient solution	82
4.1.2.1. Plant Growth	82
4.1.2.2. Contents of Cd and Pb in plant	
tissues	90
4.1.3. Effect of both Cd and Pb on spinach	103

	Page
4.1.3.1. Plant growth	103
4.1.3.2. Cd and Pb concentration in plant	
tissues	106
4.2. Assessment of Cd and Pb levels in soil,	
irrigation water and growing plants in	
Bahr El-Baqar area	109
4.2.1. Soil samples	109
4.2.2. Water samples	114
4.2.3. Plant samples	116
4.3. Accumulation and distribution of Cd and	
Pb in bean and spinach plants cultivated	
in two selected locations of Bahr El-Bagar	120
4.3.1. Plant Growth	121
4.3.2. Concentrations of Cd and Pb in plant	
tissues	124
5. SUMMARY	136
6. REFERENCES	144
ARABIC SUMMARY	

LIST OF TABLES

Table	No.	Title	Page
1		Effect of increasing Cd concentration in	
		the nutrient solution on dry matter	
		(g/pot) of bean plants of successive	
		growth stages (28, 56, 91 and 150 days	
		after planting)	46
2		Effect of increasing Pb concentration in	
		the nutrient solution on dry matter	
		(g/pot) of bean plants at successive	
		growth stages (28, 56, 91 and 150 days	
		after planting)	50
3		Effect of increasing Cd concentration in	
		the nutrient solution on the Cd status	
		in the different bean plant parts at	
		successive growth stages (28, 56, 91 and	
		150 days after planting)	5 5
4		Accumulation index of Cd in bean plant	
		as affected by Cd concentration in nut-	
		rient solution	58
5		The amount of Cd in different part of	
		bean as percent of the total Cd uptake	59

Table	No.	Title	Page
6		Effect of increasing Pb concentration in nutrient solution on the Pb status in the different bean plant parts at successive growth stages (28, 56, 91 and 150 days after planting)	61
7		Accumulation index of Pb in bean plant parts as affected by Pb concentration in nutrient solution	63
8		The amount of Pb in different part of bean as a percent of the total Pb uptake	64
9		Effect of Cd and Pb supplied in nutrient solution on amino acid percentage in bean pods	66
10		Effect of Cd and Pb supplied in nutrient solution on true protein and non protein nitrogen percentage in bean pods	70
11		Effect of Cd and Pb in nutrient media on amino acids contents in bean pods as a percentage of the control treatment	72

Table No.	Title	Page
12	Effect of Cd and Pb concentrations in	
	nutrient media on true protein and non-	
	protein nitrogen in bean as percentage	72
	of control	12
13	Mitotic indices and percentage of aber-	
	rant metaplases induced after treatment	
	with Cadmium and Lead	74
14	Frequencies of meiotic abnormalities	
	induced by different concentrations of	
	Cd and Pb in Vicia faba	78
15	Effect of increasing Cd in the nutrient	
	solution on spinach dry matter (g/pot)	
	at successive growth stages (28 and 63	
	days after planting)	83
16	Relative growth reduction (% of control)	
	in spinach plants as affected by increa-	
	sing Cd concentration in nutrient solu-	
	tion	85

Table No.	Title	Page
17	Effect of increasing Pb concentrations in the nutrient solution on spinach dry matter (g/pot) at successive growth stages (28 and 63 days after planting)	87
18	Relative growth reduction (% of control) in spinach plants as affected by increa- sing Pb concentration in nutrient solu-	
	tion	89
19	Effect of incrasing Cd concentration in nutrient solution on the Cd status in different spinach plant parts at successive growth stages (28 and 63 days after	
20	Codmium contest of different slant parts	91
20	Cadmium content of different plant parts as percent of the whole plant content	94
21	Accumulation index of Cd in spinach plant parts as affected by Cd concentra- tion in nutrient solution	96

Table No.	Title	Page
22	Effect of increasing Pb concentration in	
	nutrient solution on the Pb status in	
	the different spinach plant parts at	
	successive growth stages (28 and 63 days	
	after planting)	97
23	Lead content of different plant parts as	
	percent of the whole plant content	100
24	Accumulation index of Pb in spinach	
	plant parts as affected by Pb applica-	
	tion in nutrient solution	101
25	Effect of Cd and Pb in nutrient solution	
	on spinach dry matter (g/pot) at succes-	
	sive growth stages (28, 63 after plan-	
	ting)	104
26	Relative growth reduction (% of control)	
	in spinach plants as affected by incra-	
	sing Cd and Pb concentration in nutrient	
	solution	105

Table No.	Title	Page
27	Effect of Cd and Pb applied in nutrient solution on the Cd, Pb content and accumulation index (AI) in different	
	spinach plant parts of successive growth stage	107
28	Some physical and chemical properties of studied soils	110
29	Extractable Cd and Pb (ppm) from studied soils	113
30	Chemical composition of Bahr El-Bagar drain water during cultivation period	115
31	Concentration of Cd and Pb (ppm) in studied plants growing in Bahr El-Baqar area	117
32	Bean dry matter (kg/plot) in the two selected locations of Bahr El-Baqar, irrigated with drainage water for 10 and	
	40 years	122