EVALUATION OF SOME FERTILIZERS FOR INCREASING NITROGEN EFFICIENCY UNDEF EGYPTIAN CONDITIONS

By

YEHIA GALAL MOHAMED GALAL

A thesis submitted in partial fullfilment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Soil Science)

Department of Soil Faculty of Agriculture Ain Shams University w 7 7 500

1993

APPROVAL SHEET

EVALUATION OF SOME FERTILIZERS FOR INCREASING NITROGEN EFFICIENCY UNDER EGYPTIAN CONDITIONS

Вy

YEHIA GALAL MOHAMED GALAL

B. Sc. in Soil Sci, Fac. of Agric., Al-Azhar Univ., 1977 M. Sc. in Soil Sci, Fac. of Agric., Ain Shams Univ., 1987

This thesis for Ph. D. degree has been approved by:

Prof. Dr. S.M. El-Sherif . J.: Sherif . (Supervisor)
Prof. of Soil Sci. Aln Shams Univ.

Date of Examination 9 /1 / 1993

EVALUATION OF SOME FERTILIZERS FOR INCREASING NITROGEN EFFICIENCY UNDER EGYPTIAN CONDITIONS

By

YEHIA GALAL MOHAMED GALAL

B. Sc. in Soil Sci, Fac. of Agric., Al-Azhar Univ., 1977 M. Sc. in Soil Sci, Fac. of Agric., Ain Shams Univ., 1987

Under the Supervision of:

Prof. Dr. S.M. El-Sherif
Professor of Soil Sci., Ain Shams Univ.

Prof. Dr. F.M. Abdou
Professor of Soil Sci.. Ain Shams Univ.

Prof. Dr. A.F. El-Kholi
Professor of Soil Sci., Atomic Energy Authority.

ABSTRACT

Pot-experiments were carried out in green-house, to evaluate the effect of inoculation with either bacteria or incorporation of azolla, on growth parameters and Nz-fixed by legumes (soybean) or cereals (wheat or rice). **Nenriched urea or ammonium sulfate had been also, used as chemical fertilizers.

The obtained results, indicated that either inoculation or N-fertilization had increased the dry matter yields and nitrogen uptaken by the tested crops as compared with the control treatments. Generally, the application of chemical fertilizers in combination with inoculants, reflected that inoculation had increased the fertilizer use efficiency (FUE %). Using N-15 enriched nitrogen fertilizers revealed that, about 40-60%, 7-25% and 63% of the uptaken nitrogen was compensated by N2-fixation, via inoculation of soybean, wheat and rice plants, respectively.

Dual inoculation with *Rhizobium* plus *Azospirillum*, *Azotobacter*, and dry *Azolla* in case of soybean, wheat and rice, respectively was superior over the other inoculation treatments.

The obtained results showed that about 50-60% of the chemical fertilizers could be saved and substituted by biofertilizers. Economical return, as well as, the environmental impact had been also discussed.

CONTENTS

1. INTRODUCTION	Page 1
2. REVIEW OF LITERATURE	4
2.1. Non-symbiotic N ₂ -fixation 2.1.1. Azotobacter 2.1.2. Azospirillum 2.2. Symbiotic N ₂ -fixation 2.2.1. Soybean-Rhizobium symbiosis 2.2.2. Effect of nitrogen fertilization on nitrogen fixation of soybean	4 5 8 15 15
2.3. Biofertilization in crop production	19 19 19 26 29
2.4. Assessment of biological nitrogen fixation 2.4.1. Using N^{18} techniques for measuring N_2 -fixation	30 31
3. MATERIALS AND METHODS	33
3.1. Soil samples	33
3.2. Soil analyses	35 35 35
3.3. Sterilization methods	36 36 36
3.4. Microbial inoculants 3.4.1. Associative N₂-fixing inocula a). Azotobacter chroococcum b). Azospirillum brasilense 3.4.2. Symbiotic N₂-fixing inoculum a). Rhizobia 3.4.3. Azolla pinnata 3.5. Experimental layout 3.5.1. Wheat experiment 3.5.2. Soybean experiment 3.5.3. Rice experiment	37 37 37 37 37 38 38 39 42 44
3.6. Plant analysis	46 46 46 48

Cont.:	Page
3.7. Statistical analysis	48
4. RESULTS AND DISCUSSION	49
4.1. Evaluation of fertilizer nitrogen sources	49
4.1.1. Effect of urea and ammonium sulfate on the tested crops	49
4.1.1.1. Dry matter yield and nitrogen uptake by plants	49
4.1.1.2. Fractions of nitrogen uptaken by plants in case of urea application	50
4.1.1.3. Fractions of nitrogen uptaken by plants in case of ammonium sulfate application	61
 4.2. Evaluation of biofertilizers	63
on sovbean plants	63
4.2.1.1. Dry matter, nitrogen percent and total nitroger uptake by soybean plants	63 67
4.2.1.2. Nitrogen derived from atmosphere (N₂-fixed)	07
4.2.2. Effect of single bifoertilization with Azotobacter or Azospirillum on wheat plants	69
4.2.2.1. Dry matter, nitrogen percent and total nitrogen	رب
4.2.2.2. Nitrogen derived from atmosphere (N₂-fixed) due to bacterial inoculation of wheat plants	∍ 71
4.2.3. Use of <i>Azolla</i> as single biofertilizer on rice plants	72
2.3.1 Effect of Azolla incorporation on dry matter	
yield, nitrogen percent and nitrogen uptake by rice plants	72 74
4.3. Effect of bacterial inoculation in combination wit	h 75
chemical fertilizers on the tested crops	75
4.3.1.1. Dry matter yield, nitrogen percent and nitroge uptake	15
4.3.1.2. Portions of nitrogen uptaken by soybean plants	
4.3.2. Wheat	83 n
uptake	83 85

Cont.:		Page
4.3.3. Rice	ger : as	n 86
influenced by combination of Azolla and N-15 labelled urea	>	88
4.4. General discussion		90
5. SUMMARY AND CONCLUSIONS		104
6. REFERENCES	, <i></i>	110
7. ARABIC SUMMARY.		

LIST OF TABLES

No.	•	Page
1.	Physical properties of the experimental soil	34
2.	Some chemical properties of the experimental soil	34
з.	Experimental layout	40
4.	Dry matter yield and nitrogen uptake by soybean, wheat and rice plants as affected by labelled urea or ammonium sulfate fertilizers	50
5.	Fractions of nitrogen uptaken by soybean. wheat and rice plants treated with labelled urea or ammonium sulfate	57
6.	Effect of inoculation with <i>Rhizobium</i> , <i>Azotobacter</i> , <i>Azospirillum</i> or <i>Azolla</i> on dry matter yield, N-content, N-uptake and Ndfa of soybean, wheat and rice plants.	64
7.	Effect of nitrogen fertilization in combination with inoculation on dry matter yield, N-percent and N-uptake by tested crops	
8.	Nitrogen derived from fertilizer, soil, air and fertilizer use efficiency by soybean, wheat and rice crops as affected by combination of chemical fertilizers and bacterial inoculants	80
9.	Nitrogen uptake by soybean plants as affected by chemical fertilizers and (or) bacterial inoculation under unsterilized conditions	92

Cont.:

No.		Page
10.	Nitrogen uptake by wheat plants as affected by chemical fertilizers and (or) bacterial inoculation under unsterilized conditions	. 94
11.	Nitrogen uptake by rice plants as affected by chemical fertilizers and (or) Azolla incorporation under unsterilized conditions	. 97
12.	Economical inpact of the use of biofertilizers in area cultivated by soybean, wheat and rice	102

LIST OF FIGURES

No.	•	Page
1.	Methods of sample preparation for N-15 analysis	47
2.	Effect of nitrogen fertilizer (labelled urea or ammonium sulfate) on dry matter yield and nitrogen percent of soybean, wheat and rice plants	51
3.	Nitrogen uptake and fractions derived from fertilizer or soil as affected by nitrogen fertilization	52
4.	Effect of inoculation with <i>Rhizobium</i> , <i>Azotobacter</i> , <i>Azospirillum</i> and <i>Azolla</i> on dry matter yield and N percent of soybean, wheat and rice plants	65
5.	Nitrogen uptake and nitrogen derived from air (Ndfa) by soybean, wheat and rice plants as affected by inoculation with Rhizobium, Azotobacter, Azospirillum and Azolla	68
6.	Effect of nitrogen fertilization in combination with inoculation on dry matter yield and nitrogen uptake by tested crops	77
7.	Nitrogen derived from fertilizer (Ndff), soil (Ndfs) or air (Ndfa) by tested crops, as affected by nitrogen fertilization in combination with different bacterial inoculants	81
8.	Fertilizer use efficiency of N-15 labelled urea or ammonium sulfate alone or in combination with bio-	82

LIST OF ABBREVIATIONS

ANI : Added nitrogen interaction.

ARA : Aceytelne reduction activity.

ARC : Agriculture Research Center.

Azot : Azotobacter.

BNF : Biological Nitrogen Fixation.

DAZ : Dry Azolla.

FAZ : Fresh Azolla.

FUE : Fertilizer use efficiency.

IRRI : International Rice Research Institue.

LAS : Labelled ammonium sulfate.

LU : Labelled urea.

15N % a.e.: Percent N-15 atom excess.

N₂-ase : Nitrogenase.

Ndfa : Nitrogen derived from air.

Ndff : Nitrogen derived from fertilizer.

Ndfs : Nitrogen derived from soil.

Rh : Rhizobium.

SP : Azospirillum.

TPNinc : Total plant nitrogen of inoculated plant.

TPNcon : Total plant nitrogen of uninoculated plant.

ACKNOWLEDGEMENT

The author has the pleasure to express his great appreciation and gratitude to Prof. Dr. Saad El-Sherif; Prof. Dr. Fayez Madi Abdou and Prof. Dr. Ahmed Fouad El-Kholi, Professors of Soil Sciences, Fac. of Agric., Ain Shams Univ. and Atomic Energy Authority. respectively, for their suggestions, supervision, criticism, continuous advise and encouragement throughout the course of the fulfillment of this dissertation.

Appreciation is also extended to Prof. Dr. F.A. Mohamed, Head of the Dept. of Scil and Water Res., Atomic Energy Authority for support and providing the required facilities.

Thanks are also due to my colleagues in the Dept. of Soil and Water Res., Atomic Energy Authority, for their help and cooperation.

INTRODUCTION

Nitrogen is essential and is considered as a limiting factor for crop production in Egypt. Chemical nitrogen fertilizers inputs had been increased during the last decades. According to FAO (1990), the Egyptian growers had consumed more than 37% of the African's consumption of nitrogen fertilizers. This luxury use of nitrogen fertilizers was accounted to about 4.983 x 10° tons annually, according to the annual statistical book, A.R.E. (1990).

The efficient use of nitrogen fertilizers was low due to the high values of pH. high temperature and in some cases, the high content of calcium carbonate, as well as the misuse of irrigation water. These conditions are considered the most factors which are responsible for the great losses of nitrogen fertilizers through denitrification and/or NHo-volatilization. Under logging conditions, NOo leaching is the main source of nitrogen losses. Therefore, the losses from nitrogen fertilizers are within the range of 50-60% from the total applied nitrogen. Moreover, the lost nitrogen may act as pollutant for soil, water and air, and become harmful for life of human being on earth.

Recently, great attention has been focused on the use of alternative sources or renewable agents for increasing soil fertility, crop production and maximizing nitrogen use efficiency. These alternative sources are called

"Biofertilizers". and could be recognized as useful technology for reducing the input of nitrogen fertilizers in agriculture and controlling soil and water pollution. recent years, biofertilization technology had been applied on a large scale in the world. but it is still at the primary stages in Egypt. As far as the literature had been widely reviewed concerning studies of biofertilization on crop production under Egyptian conditions. yet the obtained results should suffice to emphasize the importance of further investigations in this direction. In order to perform a contribution on biofertilization. series of experiments must be conducted in order not only to shed light on its beneficial effects for higher crop production. but also for practical reasons to solve the problem of nitrogen use efficiency and consequently a maximizing parallel acceleration in minimizing environmental pollution.

In essence then, the current study is an endeavour to expose the effects of:

- 1.Single biofertilization with non-symbiotic nitrogen fixing bacteria as bacterial inoculation with Azotobacter and Azospirillum on wheat plants.
- 2. Single biofertilization with symbiotic nitrogen fixing bacteria as bacterial inoculation with *Rhizobium* on soybean plants.
- 3. Single biofertilization with symbiotic nitrogen aquatic fern either as green Azolla intercropped with rice or