

POSSIBLE USES OF ACTIVATION ANALYSIS IN STUDIES OF HEAVY METALS IN AGRICULTURAL ENVIRONMENT

By

MAGDY AHMED MOHAMED RIZK

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Science (Soil Science)

48103

Department of Soil Science
Faculty of Agriculture
Ain Shams University

1994

POSSIBLE USES OF ACTIVATION ANALYSIS IN STUDIES OF HEAVY METALS IN AGRICULTURAL ENVIRONMENT

By

MAGDY AHMED MOHAMED RIZK

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Science (Soil Science)

~8103

Department of Soil Science Faculty of Agriculture Ain Shams University

1994

APPROVAL SHEET

POSSIBLE USES OF ACTIVATION ANALYSIS IN STUDIES OF HEAVY METALS IN AGRICULTURAL ENVIRONMENT

By

MAGDY AHMED MOHAMED RIZK

B. Sc. in Soil Sci., Fac. Agric., Ain Shams Univ., 1978 M. Sc. in Soil Sci., Fac. Agric., Ain Shams Univ., 1987

This Thesis for Ph. D. degree has been approved by:

Prof. Dr. Saad Mahmoud El-Sherif S. Jan. Prof. of Soil Sci., Fac. of Agric., Ain Shams Univ.

Prof. Dr. Nabil Ali Bayoumi Bayoumi B. augana. A. H.
Prof. of Soil Sci., Fac. of Agric., Menoufia Univ.

Prof. Dr. Mohamed El-Nennah M. S. Neamed Prof. of Soil Sci., Fac. of Agric., Ain Shams Univ. (Supervisor)

Date of Examination: 5/9/ 1994

POSSIBLE USES OF ACTIVATION ANALYSIS IN STUDIES OF HEAVY METALS IN AGRICULTURAL ENVIRONMENT

By

MAGDY AHMED MOHAMED RIZK

B. Sc. (Soil Sci.) Fac. Agric., Ain Shams Univ., 1978

M. Sc. (soil Sci.) Fac. Agric., Ain Shams Univ., 1987

Under the supervision of:

Prof. Dr. Mohamed El-Nennah

Professor of Soil Sci., Fac. of Agric., Ain Shams Univ.

Prof. Dr. Massoud A. Massoud

Professor of Soil Sci., Atomic Energy Authority.

ABSTRACT

Three experiments were conducted to study the possible uses of activation analysis to investigate heavy bility use of instrumental neutron activation analysis National Bureau of Standard, orchard leaves 1571 and sediments SL-1. The comparison between instrumental neutron activation analysis and atomic absorption spectructurent analysis and atomic absorption spectructurent analysis technique. The efficient measurement of spiked biological sample as determined by instrumental neutron activation analysis technique was studied The use absorption spectrometry for study of organic wastes, plants and plants grown on soil treated with sewage effeluent, aquatic effeluent was also showed. The data for the comparison neutron activation analysis and atomic sediments, soils treated with sewage effeluent, aquatic effeluent was also showed. The data for the comparison neutron activation analysis and atomic absorption spectrometry showed the possibility of use the methods for such study.

Key Words: Instrumental neutron activation analysis, atomic absorption spectrometry, heavy elements , plant , soil , sediments .

ACKNOWLEDGMENT

The author wishes to express his deep appreciation and gratitude to **Prof. Dr. Mohamed El-Sayed El-Nennah**, Professor of soil Science, Faculty of Agriculture, Ain Shams Univ., and **Prof. Dr. Massoud Ahmed Massoud**, Professor of soil Science, Atomic Energy Authority, for suggesting the problem, supervision, guidance and continuous encouragement and valuable help in accomplishing this study and writing the manuscript.

Sincere thanks to **Prof. Dr. Farid Ahmed Mohamed,** Head of the Dept. of Soil and Water Res., Atomic Energy Authority, for support and providing the required facilities.

I am very grateful to all those who have contributed in any way to make this investigation possible.

CONTENTS

	Page
1.	INTRODUCTION
2.	REVIEW OF LITERATURE4
2.1	Instrumental Neutron Activation Analysis (INAA)4
	2.1.1 Theory of INAA Technique5
	2.1.2 Instrumental and Technique of INAA8
	2.1.3 Collection and Sample Preparation10
	2.1.4 Sampling Irradiation11
	2.1.5 Measurement of radioactivity
2.2	Application of INAA Technique15
	2.2.1 Analysis of soil total and available elements
	2.2.2 Plant Nutrition Applications
	2.2.3 Environmental pollution applications20
2.3	Atomic Absorption Spectrometry (AAS)22
	2.3.1 Theory of atomic absorption technique23
2.3	.2. Application of AAS atomic absorption pectrometry AAS
	2.3.2.1 Analysis of soil total and available elements
	2.3.2.2 Plant Nutrition applications30
	2.3.2.3 Environmental pollution applications31
2.4	Comparison between INAA and AAS Techniques33
3.	MATERIALS AND MATHODS37
4	RESULTS AND DISCUSSION AS

			bage
4.1	affecte	ey and precision of INAA technique as ed by matrices type and weight of some ace materials	47
4.2	.Efficie in squa	ent measurements of some trace elements ash plant determined by AAS and INAA	67
4.3	.Determi samples	nation of some elements in environmental susing AAS and INAA techniques	74
	4.3.1.	Determination of total heavy elements in tested organic wastes	.74
		Determination of total heavy elements in tested sediments samples of some water streams	.80
	4.3.3.	Determination of total heavy elements in soi samples treated withe sewage effluent	.1
	4.3.4.D	etermination of total heavy elements in quatic plants	.92
		Determination of total heavy elements in different parts of some plants grown on soil treated with sewage effluent (Abo-Rawash Farm)	.98
5.	CONCLUS	ION	.105
6.	SUMMARY		.107
7.	REFEREN	CES	.115
8.	APPENDI	X	.132
9.	ARARTO	SIMMADY	

LIST OF TABLES

Table P.	age
Comparison of detection limits by INAA and spectrochemical methods (flame and furnace atomic absorption)	35
2. Some physical and chemical properties of the experimental soil sample	39
3. Conditions utilized for elements determined by INAA	44
Trace elements contents of certified IAEA reference material Soil S-5 as determined by INAA (ug/g)	e 49
Trace elements contents of certified IAEA reference material SL-1 (Sediment, Lake) as determined by IN (ug/g)	AA
Trace elements contents of certified IAEA reference material orchard leaves 1571 as determined by INAA (ug/g)	
Summary of radioassay information pertaining to neutron activation analysis of soil	53
Regression analysis for different elements concentration (ppm) as affected by sample weight (of standard reference materials S-5	g) 60
. Effect of applied Co on Co concentration in squash shoots determined by AAS and INAA techniques	68
0. Effect of applied Zn on Zn concentration in squash shoots determined by AAS and INAA techniques	69
 Total content of heavy elements in tested organic waste (ppm) determined by AAS Techniques 	75
 Total content of heavy elements in tested organic waste (ppm) determined by INAA Techniques 	76
3. Total content of heavy elements (ppm) in sediments some water streams determined by AAS techniques	of 82
4. Total content of heavy elements (ppm) in sediments some water streams determined by INAA Techniques	of 82

Tabl No.	Le	page
15.	Total content of heavy elements in soil samples treated with sewage effluent (ppm) determined by Techniques	
16.	Total content of heavy elements in soil samples treated with sewage effluent (ppm) determined by Techniques	
17.	Total content of heavy elements in aquatic plant samples (ppm) determined by AAS	
18.	Total content of heavy elements in aquatic plant samples (ppm) determined by INAA	
19.	Total content of heavy elements (ppm) in leaves fruits of some plants grown on soil treated with sewage effluent (Abo-Rawash farm) determined by AAS	
20.	Total content of heavy elements (ppm) in leaves a fruits of some plants grown on soil treated with sewage effluent (Abo-Rawash farm) determined by INAA	L

LIST OF FIGURES

Fig.	No.	age
1.	Schematic diagram of a single-beam atomic absorpti spectrometer comprised of a hollow-cathode lamp, A a burner/nebulizer, B; a monochromator, C; a photomultiplier, D; and output device, E	λ;
2.	Gamma-ray spectrum of neutron-irradiated standard soil sample (S-5) taken with H. p. (G) detector after a long irradiation (3 days) and decay period (20 day)	i . 56
3.	Gamma-ray spectrum of neutron-irradiated standard sediments Lake (SL-1) taken with H. p. (G) detects after a long irradiation (3 days) and decay period (20 day)	ì
4.	Gamma-ray spectrum of neutron-irradiated standard Orchard leaves (1571) taken with H. p. (G) detects after a long irradiation (3 days) and decay period (20 day)	đ
5.	Relation between reference material weight and Ba content determined by INAA	.61
6.	Relation between reference material weight and Rb content determined by INAA	.61
7.	Relation between reference material weight and Cr content determined by INAA	.62
8.	Relation between reference material weight and Sb content determined by INAA	.62
9.	Relation between reference material weight and Fe content determined by INAA	.63
10.	Relation between reference material weight and Zn content determined by INAA	.63
11.	Relation between reference material weight and Co content determined by INAA	. 64
12.	Relation between reference material weight and Cs content determined by INAA	. 6 4
13.	Relation between reference material weight and Sc content determined by INAA	.65

14.	Relation between levels of Co added to soil and the content of CO in plant determined by AAS and INAA71
15.	Relation between levels of Zn added to soil and the content of Zn in plant determined by AAS and INAA
16.	Relation between available Co-DTPA in soil and the content of Co in plant determined by AAS and INAA72
17.	Relation between available Zn-DTPA in soil and the content of Zn in plant determined by AAS and INAA72
18.	Total content of Fe (ppm) in organic waste determined by AAs and INAA
19.	Total content of Zn (ppm) in organic waste determined by AAS and INAA
20.	Total content of Co (ppm) in organic waste determined by AAS and INAA78
21.	Total content of Fe (ppm) in sediments samples of some water streams determined by AAS and INAA78
22.	Total content of Zn (ppm) in sediments samples of some water streams determined by AAS and INAA83
23.	Total content of Co (ppm) in sediments samples of some water streams determined by AAs and INAA83
24.	Total content of Fe (ppm) in different soils treated with sewage effluent determined by AAS and INAA89
25.	Total content of Zn (ppm) in different soils treated with sewage effluent determined by AAS and INAA89
	Total content of Co (ppm) in different soils treated with sewage effluent determined by AAS and INAA90
27.	Total content of Fe (ppm) in aquatic plant samples determined by AAS and INAA90
28.	Total content of Zn (ppm) in aquatic plant samples determined by AAS and INAA95
29.	Total content of Co (ppm) in aquatic plant samples determined by AAS and INAA95

30.	Total content of Fe (ppm) samples determined by AAS	in leaves and fruits and INAA101
31.	Total content of Zn (ppm) samples determined by AAS	in leaves and fruits INAA101
32.	Total content of Co (ppm) samples determined by AAS	in leaves and fruits INAA102

LIST OF APPENDIX

No		pag	gе
1.	Stat	tistical values used in the text	32
2.	Abbı	reviations used in the text	32
3.		nt names with corresponding Latin names in text	33
Tab	. 1.	Effect of applied Co on Co-uptake (ug/pot) in squash shoots determined by AAS and INAA techniques	34
Tab	. 2.	Effect of applied Zn on Zn-uptake (ug/pot) in squash shoots determined by AAS and INAA techniques	34
Fig	. 1.	Relation between levels of Co added to the soil and the uptake of Co by plant determined by AAS and INAA	35
Fig	. 2.	Relation between levels of Zn added to the soil and the uptake of Zn by plant determined by AAS and INAA	35
Fig	. 3.	Relation between available Co in soil and amount of Co absorbed by plant determined by AAS and INAA	36
Fig	. 4.	Relation between available Zn in soil and amount of Zn absorbed by plant determined by AAS and INAA	36
Tab	. 3.	Concentration of trace elements in sewage sludge which considered as element contaminants in soil (ppm)1	37
Tab	. 4.	Normal and phytotoxic contents of trace elements (ppm) in dry matter of ryegrass1	38

INTRODUCTION

During the past 3 decades since the introduction of a practical system which allows quantitative analytical atomic absorption spectrometry (AAS), the technique has become one of those most extensively employed for the determination of trace elements of a wide variety of materials.

Relative few problems are encountered in the determination, by AAS of trace concentrations, of elements in dilute aqueous solutions. For matrices of biological origin, e.g. Soil, plant tissues and sediments materials, it is essential to ensure adequate attention to sampling, sample pretreatment and elimination or compensation for matrix effects if accurate and precise results are to be obtained by the technique.

In recent years with the increased concern about pollution of the environment, many trace elements have become the main object of interest through their increased concentration in air, water, food, soil and ultimately in animal tissues and fluids. Multielement analysis of sewage sludge, atmospheric particulates from smelters mining activities and the agronomic practices in soils; e.g. fertilization, pesticides, herbicides and irrigation with low quality water, has provided an