SYNTHESIS OF SOME AROMATIC AND HETEROCYCLIC COMPOUNDS CONTAINING NITROGEN ATOM

A Thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN CHEMISTRY

547.04 VI. Er

Presented by

WALEED ELSAYED BORAIE

Department of Chemistry Faculty of Science Ain shams University Cairo, Egypt 1997

SYNTHESIS OF SOME AROMATIC AND HETEROCYCLIC COMPOUNDS CONTAINING NITROGEN ATOM

Thesis advisors

Prof. Dr. G.H. Sayed
Prof.Dr.Ashraf A.M. Hamed
Prof.Dr. A.S Abd-El- Aziz

Thesis approved

-1) Dea Et HJ -

Head of Chemistry Department
Prof.Dr. Fahmy, A.F.M.

Central Library - Ain Shams University

ABSTRACT

Time-dependent oxidation reactions of η⁶-alkylaniline-η⁵-cyclopentadienyliron hexafluorophosphate, allowed for the preparation of nitrobenzene complexes with alkyl or keto substituents. Alkyl nitroarene complexes were prepared by the oxidation of their corresponding aniline complexes with H₂O₂ in CF₃COOH for 20 minutes. Increasing the reaction time to 24 hours gave rise to nitroarene complexes with keto substituents in lower yields. The use of nitroarenes as starting materials in the synthesis of alkanoic acid esters is of importance since it allows for the preparation of a large number of this class of compounds with a variety of alkyl substituents. Two different approaches were utilized to allow for the synthesis of alkanoic acid esters. The first approach involved nucleophilic aromatic substitution reactions of alkyl nitrobenzene complexes with ethyl alkylacetoacetates followed by demetallation to give alkanoic acid esters. This methodology allowed for the preparation of these esters with a variety of alkyl substituents in either the meta or para positions. Another route outlined the reaction of phenylsulphonylacetonitrile with nitroarene complexes to prepare alkanoic acid precursors with alkyl substituents in the ortho, meta, and para positions. The preparation of a large pool of nitroarene complexes clearly demonstrates the advantage of using the cyclopentadienyliron arene complexes in the synthesis of alkanoic acid esters or their precursors, arylated phenylsulphonylacetonitriles, over traditional synthetic routes. Also, addition of cyanide anions to substituted arene cyclopentadienyliron complexes

containing electron-donating group like alkyl and electron-withdrawing group such as nitrogroup, was investigated. Cyanide addition with these complexes proved to be highly selective, allowing for the formation of one adduct while in the case of sec-butyl group in p-position for nitroarene iron complex gave rise to two isomers due to the asymmetric carbon. Also, the reaction of cyanide anion with p-keto nitroarene complex gave rise to two isomers; one is ortho addition and the other is ipso addition. Selective addition of the cyanide anion with various alkylarylsulphonyl di-iron complexes gave rise to one adduct ortho to the electron-withdrawing sulphonyl group.

Formation of cyanide adducts of poly-iron systems were achieved by selective addition to ortho position of methyl group in polycyclopentadienyliron arene complex with etheric bridges. The nature of some of these adduct were identified by HH COSY NMR techniques. Oxidative demetallation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) yielded the substituted benzonitrile and the functionalized uncomplexed polyaromatic ether with cyano groups in good yield and free diaromatic sulphoxide alkane with cyano group in good yield.

Formation of cinnolines cyclopentadienyliron complexes was carried out in two steps. First formation of the hydrazone on a keto group in position 2 of the side chain of o-chloro (substituted benzene) cyclopentadienyliron complex. Second, the nucleophilic substitution carried out on the o-chloro group by the second amino group of hydrazone gave rise the CpFe complexes of 3-mono-, or 3.4-disubstituted 1.4 dihydrocinnoline.

ACKNOWLEDGEMENTS

I would like to thank my supervisors. Professor Dr. Galal Hosni Sayed, Professor of Organic Chemistry, Faculty of Science, Ain Shams University, Professor Dr. Ashraf A.M. Hamed, Professor of Organic Chemistry, Faculty of Science, Ain Shams University, and Professor Dr. Alaa S. Abd-El-Aziz, Professor of Chemistry, Faculty of Arts and Science, University of Winnipeg, for their support, guidance, and patience throughout the course of my work. I wish to express my sincere gratitude and deep indebtedness to Dr. Alaa S. Abd-El-Aziz for his continual help, guidance, and valuable criticism. I wish to thank all the people who provided moral support and patience through the duration of my thesis: C.R. de Denus, K. Epp, S. Bernardin, K. Tran, D. Armstrong, S. Smith, A. White, and A. Peter.

I would like to thank the Department of Chemistry, Faculty of Science, Ain Shams University and the Department of Chemistry, University of Winnipeg for providing me with the facilities necessary to pursue this project. I would also like to acknowledge Dr. Ahmed El-Zonfly and the Egyptian Cultural and Educational Bureau in Montreal for their support during my scientific mission at the University of Winnipeg. Finally, special thanks to all my family for all their support and encouragement.

iii

TABLE OF CONTENTS

	Page
ABSTRACT	į
ACKNOWLEDGEMENTS	iii
LIST OF FIGURES	viii
LIST OF TABLES	xiv
1.0 INTRODUCTION	1
1.1 Organometallic Reagents in Organic Synthesis	1
1.1.1 18-Electron Rule	2
1.1.2 Hydrocarbon Ligands	2
1.2 The Use of Organoiron Chemistry in Organic Synthesis	4
1.2.1 [η ⁶ -arene-η ⁵ -cyclopentadienyl] Iron Complexes	4
1.2.2 Synthesis of Arene Complexes	4
1.3 Mechanism of Ligand Exchange Reaction	7
1.4 Reactivities of η ⁶ -arene-η ⁵ -cyclopentadienyliron Complexes	9
1.4.1 Nucleophilic Substitution Reactions	10
1.4.1.1 Synthesis of Bis [η6-phenoxy-η5-cyclopenta-	
dienyliron hexafluorophosphate] Alkane	14
1.4.1.2 Synthesis of Diaryl Alkyl Diethers and Disulfides	15
1.4.1.3 Poly-cyclopentadienyliron Arene Complexes	17
1.5 Nucleophilic Addition Reactions	18
1.5.1 Introduction	18
1.5.2 Addition of Hydride Anion	21
1.5.3 Cyanide Addition to Cyclopentadienyl Arene Iron	
Complexes	24
1.5.4 Nucleophilic Addition to Di-iron Arene Complexes	25
1.5.5 Addition of Trichlorocarbanion to ArFe+cp Complexes	25
1.5.6 Arene Cr(CO) ₃ Complexes	26
1.5.7 Arene Mn ⁺ (CO) ₃ Complexes	29
1.5.8 Double Nucleophilic Addition Reactions	30
1.6 Oxidation Reactions	32
1.7 Deprotonation Reactions	34
1.8 Demetallation Reactions	36

1.9 Cyclization Reactions	38
1.10 Spectroscopic Studies of η6-arene-η5-cyclopentadienyliron	
Complexes	40
1.10.1 Nuclear Magnetic Resonance Studies	40
1.11 Objective of the Present Work	45
2.0 THE SYNTHESIS OF ALKYLATED OR ACYLATED NITROARENE	
COMPLEXES: AN ALTERNATIVE APPROACH TO THE SYNTHESIS	
OF ARYLATED ALKANOATES	.17.
2.1 Introduction	46 46
2.2 Results and Discussion	
2.2.1 Synthesis of Substituted Aniline Complexes	47
2.2.2 Oxidation of Substituted Aniline Complexes	47
2.3 Nucleophilic Substitutions	49
2.3.1 Substitution Reaction of Alkyl Nitrobenzene with	53
Phenylsulphonylacetonitrile	
2.3.2 Substitution Program of Albert Nic. 1	53
2.3.2 Substitution Reaction of Alkyl Nitrobenzene Complexes	
with Ethyl Alkyl Acetoacetates	56
2.3.2.1 Synthesis of Ethyl 2-alkyl Acetoacetate	56
2.3.2.2 Displacement of the NO ₂ Group from Arene Iron	
Complexes By Ethyl 2-methyl Acetoacetate	57
2.3.2.3 Displacement of the NO ₂ Group from Arene Iron	
Complexes By Ethyl 2-ethyl Acetoacetate	59
2.3.2.4 Arylation of Ethyl 2-butyl Acetoacetate	62
2.3.2.5 Mechanism for Nucleophilic Substitution with	
Ethyl 2-Alkyl Acetoacetate	64
3.0 CYANIDE ADDITION	120
3.1 Addition of Cyanide to Substituted Arene Mono-iron Complex	120
3.1.1 Addition of Cyanide to η5-cyclopentadienyl (η6-mono-	12.0
substituted nitrobenzene) Iron(II) Hexafluorophosphate	120
3.4.2 Addition of Cyanide to \(\eta^5\)-cyclopentadienyl (\(\eta^6\)-highly-	i \ 7
substituted nitrobenzene) Iron(II) Hexafluorophosphate	124
3.2 Addition of Cyanide to Aryl Sulfoxide Bimetallic Iron Complexes	126
3.3 Addition of Cyanide to Polyether Iron Complex	128
4.0 CYCLIZATION REACTIONS	157
D.O. DEMETALLATION	1.7
5.1 Photolytic Demetallation	167
and the semental differences	167

2.1 Eaberation of the Pure Arylated Phenylsulphonyl	
acetonitriles	167
5.1.2 Liberation of the Pure Alkanoic Acid Esters	169
5.2 Oxidative Demetallation	175
5.2.1 Oxidative Degradation	175
5.2.2 Oxidative Degradation for Adduct of Bimetallic Iron	
Complex	178
5.2.3 Oxidative Degradation of the Cyanide Adducts in	
Polymeric System	178
5.3 Demetallation By Sodium Amide	180
6.0 EXPERIMENTAL	232
6.1 Reagents and Instrumentation	232
6.2 Synthesis of Substituted Aniline Complexes	234
6.2.1 Preparation of η ⁵ -cyclopentadienyl [η ⁶ -substituted aniline)	451
Iron(II) Hexafluorophosphate	234
6.3 Preparation of Alkyl and Acetyl Nitroarene Cyclopentadienyliron	23.
Complexes	235
6.3.1 Preparation of η ⁵ -cyclopentadienyl [η ⁶ -alkylnitrobenzene)	-55
Iron(II) Hexafluorophosphate (2.33-2.48)	235
6.3.2 Preparation of η ⁵ -cyclopentadienyl [η ⁶ -acetylnitrobenzene)	
Iron(II) Hexafluorophosphate (2.49)	236
6.4 Synthesis of Some Alkanoic Acid Ester Complexes and Alkyl Phenyl	
(phenylsulphonylacetonitrile) Complexes	237
6.4.1 Preparation of Ethyl 2-alkyl Acetoacetate	237
6.4.2 Preparation of \(\eta^5\)-cyclopentadienyl [\(\eta^6\)-substituted phenyl	
(phenylsulphonyl) acetonitrile] Iron(II)	
Hexafluorophosphate (2.50-2.60)	238
6.4.3 Preparation of η ⁵ -cyclopentadienyl [η6-ethyl-2 (substituted	
phenyl) propanoate] Iron(II) Hexafluorophosphate	239
6.4.4 Preparation of η ⁵ -cyclopentadienyl [η ⁶ -ethyl-2 (substituted	
phenyl) butanoate] Iron(II) Hexafluorophosphate	240
6.4.5 Preparation of η ⁵ -cyclopentadienyl [η ⁶ -ethyl-2 (substituted	
phenyl) hexanoate] Iron(II) Hexafluorophosphate	241
6.5 Cyanide Addition	242
6.5.1 Preparation of 1,5-η5-substituted-exo-6-cyano-1-	
nitrocyclohexadienyl-η ⁵ -cyclopentadienyliron	242
6.5.2 Addition of Cyanide to Substituted 1,4-bis (η6-aryl	
sulfoxide-η ⁵ -cyclopentadienyliron) Alkyl	
Dihexafluorophospate	243
6.5.3 Addition of Cyanide to Polyiron Complexes	243

6.6 Cyclization Reaction	244
6.6.1 General Procedure for Cyclization Reactions	244
6.7 Photolytic Demetallation	245
6.7 Photolytic Demetallation of η\-cyclopentadienyl [η\-	
substituted phenyl (phenylsulphonyl) acetonitrile	
Iron(II) Hexafluorophosphate (2.50-2.60)	245
6.7.2 Photolysis of η ⁵ -cyclopentadienyl [η6-ethyl-2-(substituted	
phenyl) ester] Iron(II) Hexafluorophosphate	245
6.8 Oxidative Degradation	
6.8.1 General Method for Oxidative Degradation	240
6.9 Demetallation with Sodium Amide	247
7.0 CONCLUSIONS	248
8.0 REFERENCES	251

LIST OF FIGURES

Figure		Page
l(a). Generation of the 2-D spectrum	43
1(b). Contour slice	43
2.	¹ H NMR spectrum of η ⁵ -cyclopentadienyl [η ⁶ -4-η ⁵ -isopropylaniline] iron(II) hexafluorophosphate (2.18) in acetone-d ₆	91
3.	¹ H NMR spectrum of η^5 -cyclopentadienyl [η^6 -4-n-butylaniline] iron(II) hexafluorophosphate (2.20) in acetone-d ₆	92
4.	¹ H NMR spectrum of η^5 -cyclopentadienyl [η^6 -3,4-dimethylaniline] iron(II) hexafluorophosphate (2.27) in acetone-d ₆	93
5.	¹ H NMR spectrum of η^5 -cyclopentadienyl [η^6 -2,6-diethylaniline] iron(II) hexafluorophosphate (2.29) in acetone-d ₆	94
6.	1H NMR spectrum of η ⁵ -cyclopentadienyl [η ⁶ -2,6-diisopropylaniline] iron(II) hexafluorophosphate (2.30) in acetone-d ₆	95
7.	¹³ C NMR spectrum of η ⁵ -cyclopentadienyl [η ⁶ -2,6-diethylaniline] iron(II) hexafluorophosphate (2.29) in acetone-d ₆	96
8.	¹³ C NMR spectrum of η ⁵ -cyclopentadienyl [η ⁶ -2-isopropylaniline] iron(II) hexafluorophosphate (2.19) in acetone-d ₆	97
9.	13C NMR spectrum of η ⁵ -cyclopentadienyl [η ⁶ -2,4,6-trimethylaniline] iron(II) hexafluorophosphate (2.32) in acetone-d ₆	98
10.	IR spectrum of η^5 -cyclopentadienyl [η^6 -4-n-pentylaniline] iron(II) hexafluorophosphate (2.24) neat	9 9
11.	H NMR spectrum of the mixture of η ⁵ -cyclopentadienyl [η ⁶ -2,6-diacetylnitrobenzene] iron(II) hexafluorophosphate(I) and	

viii

	η^5 -cyclopentadienyl [η^6 -2,6-diethylnitrobenzene] iron(H) hexafluorophosphate(H) in acetone-d ₆	100
12	¹³ C NMR spectrum of the mixture of η^5 -cyclopentadienyl $[\eta^6\text{-}2.6\text{-diacetylnitrobenzene}]$ iron(H) hexafluorophosphate(I) and η^5 -cyclopentadienyl $[\eta^6\text{-}2.6\text{-diethylnitrobenzene}]$ iron(H) hexafluorophosphate(II) in acctone-d ₆	101
13.	¹ H NMR spectrum of η ⁵ -cyclopentadicnyl [η ⁶ -4-ethylnitrobenzene] iron(H) hexafluorophosphate (2.33) in acetone-d ₆	102
14.	¹³ C NMR spectrum of η^{5} -cyclopentadienyl [η^{6} -4-sec-butylnitrobenzene] iron(II) hexafluorophosphate (2.39) in acetone-d ₆	103
15.	$^{13}\mathrm{C}$ NMR spectrum of η^5 -cyclopentadienyl [η^6 -2,4,6-trimethylnitrobenzene] iron(II) hexafluorophosphate (2.48) in acetone- $^{13}\mathrm{G}$	104
16.	¹ H NMR spectrum of η ⁵ -cyclopentadienyl [η ⁶ -4-acetylnitrobenzene] iron(II) hexafluorophosphate (2.49) in acetone-d ₆	105
17.	^{1}H NMR spectrum of η^5 -cyclopentadienyl [η^6 -4-sec-butylphenyl (phenylsulphonyl) acetonitrile] iron(II) hexafluorophosphate (2.54) in acetone-d ₆	106
18.	^{13}C NMR spectrum of η^5 -cyclopentadienyl [η^6 -2,4-dimethylphenyl (phenylsulphonyl) acetonitrile] iron(II) hexafluorophosphate (2.57) in acetone-d $_6$	107
19,	IR spectrum of η ⁵ -cyclopentadienyl [η ⁶ -4-ethylphenyl (phenyl-sulphonyl) acetonitrile] iron(II) hexafluorophosphate (2.50) in CH ₂ Cl ₂	108
20.	H NMR spectrum of η ⁵ -cyclopentadienyl [η ⁶ -4-isopropylphenyl (phenylsulphonyl) acetonitrile] iron(II) hexafluorophosphate (2.51) in acetone-d ₆	109
21.	^{13}C NMR spectrum of η^5 -cyclopentadienyl [$\eta^63,5\text{dimethylphenyl}$ (phenylsulphonyl) acetonitrile[iron(II) hexafluorophosphate (2.59) in acetone-d ₆]] (3
21	H NMR spectrum of ethyl 2-methyl acetoacetate in CDCI ₃	111