

Ain Shams University
Faculty of Medicine
Department of Anesthesiology, Intensive care and Pain Management

Post-Herpetic Neuralgia

An Essay Submitted for partial fulfillment of Master Degree in Pain Management

By Mohamed Osman Awad Taeimah (MB, B.CH, M.Sc., MD Anesthesia)

Supervised by

Prof. Dr. Amr Essam El-Din Abd El-Hamid

Professor of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmed Nagah El-Shaer

Professor of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University

Dr. Akram Mohamed Mohamed Amer

Lecturer of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Acknowledgement

First and foremost I fell always indebted to **ALLAH**, the most kind and most merciful.

I am deeply grateful to **Prof. Dr. Amr Essam El-Din Abd El-Hamid** Professor of Anesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University. I am indebted to his constructive criticism, expertise and continuous unlimited help. It was great honor to finish this work under his supervision.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Ahmed Nagah El-Shaer** Professor of Anesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University for her great supervision, encouragement and for giving me the privilege to work under her supervision.

I would like to express my extreme gratitude to **Dr.Akram Mohamed Mohamed Amer,** Lecturer of Anesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University for his meticulous supervision and valuable remarks throughout this study.

Mohamed Osman Taeimah
Cairo, 2016

List of contents

<u>Title</u>	Page No.
Introduction	1
Aim of Essay	3
Chapter One	4
Chapter Two	44
Chapter Three	55
Chapter Four	99
Summary	125
References	127
Arabic summary	

List of figures

Fig. No.	Title	Page No.
Fig (1) Structu	re of Herpesvirus.	3
Fig (2) Oro-ph	aryngeal Herpes	19
Fig (3) Herpeta	ic Kerato-conjunctivii	tis 20
Fig (4): Herpet	ic whitlow	22
Fig (5): Neonat	tal Herpes	23
Fig (6): Immuno	ofluorescence staining	of HSV 28
Fig (7): Giemsa	•	29
Fig (8): Rash of	Chicken Pox	37
Fig (9): Tzanck	Smear	41
Fig (10): Likert	scale	57
	rgence/divergence of a	nerve fibers 123

List of Tables

Table No.	Title	Page No.
Table (1): Key poin	ts of PHN treatment strategy	58
Table (2): Commo	n side effects of PHN Medi	cations 85

List of abbreviations

5HT	Caratonin
AED	Serotonin Anti anilanti a Davida
	Antiepileptic Drugs
AIDS	Acquired Immune deficiency Syndrome
CMV	Cytomegalovirus
CNS	Central Nervous System
CSF	Cerebrospinal Fluid
DHC	Dorsal Horn Cell
DNA	Deoxyribonucleic acid
DPN	Diabetic Neuropathy
DRG	Dorsal Root Ganglion
EBV	Epstein-Barr virus
ENF	Epidermal Nerve Fibers
FDA	Food and Drug Administration
GABA	Gama Amino Butyric Acid
HSV	Herpes Simplex Virus
<i>Ig</i>	Immunoglobulin
<i>IPG</i>	Implantable Pulse Generator
KSHV	Kaposi sarcoma-associated herpesvirus
<i>LMP</i>	Lidocaine-Medicated Plaster
<i>NA</i>	Noradrenaline
<i>NICE</i>	National Institute for Health and Clinical Excellence
nm	nanometer
<i>NMDA</i>	N-methyl-D-aspartate Antagonists
NNT	Number Needed to Treat
NSAID	Non-Steroidal Anti-inflammatory Drugs
PCR	Polymerase chain reaction
PHN	Postherpetic Neuralgia
<i>RIPG</i>	Rechargeable Implantable Pulse Generator
SCS	Spinal Cord Stimulation
SNRI	Serotonin Noradrenaline Reuptake Inhibitor
TCA	Tricyclic Antidepressant
TPRV1	Transients Receptor Potential Vanilloid 1
	ī

VAS VZV WHO Visual Analogue Scale Varicella Zoster Virus World Health Organization

ABSTRACT

Introduction: Shingles (herpes zoster) is caused by the reactivation of a latent varicella zoster virus (VZV) infection, generally decades after the primary infection. The definition of post-herpetic neuralgia varies in the defined time period of the persistence of pain after the resolution of the rash (4-24 weeks) and thus the actual incidence is not known. Aim of the Work: The aim of this essay is to improve knowledge about pathogenesis and management of Post-Herpetic Neuralgia. Therefore, it is important to emphasis on the fact that anticipating such disease would be associated with a better outcome. Conclusion: Clinical results are dependent on precise lead placement as well as the underlying pathology being treated. However, spinal cord stimulation (SCS) continues to present its own unique set of challenges that must be acknowledged and addressed if this therapy's full potential is to be realized.

Key words: Shingles (herpes zoster), Post-Herpetic Neuralgia, varicella zoster virus. SCS

Introduction 1

Introduction

Shingles (herpes zoster) is caused by the reactivation of a latent varicella zoster virus (VZV) infection, generally decades after the primary infection. Primary VZV infection typically occurs during childhood and causes chickenpox (varicella); following primary VZV infection, the virus enters the sensory nerves and travels along the nerve to the sensory dorsal root ganglia and establishes a permanent latent infection. Reactivation of the latent virus leads to the clinical manifestations of shingles, and is associated with immune senescence or suppression of the immune system i.e. immunosuppressive therapy, HIV infection, malignancy and/or increasing age. (Van Hoek et al., 2009)

Post-herpetic neuralgia (PHN) is the most common and feared complication of herpes zoster (HZ); it is mainly reported among the elderly and is described as painful and refractory. It is a complication rather a continuation of acute HZ and is defined as persistent pain in the HZ-involved areas that continues for more than 3 months after disappearance of the vesicles (*Rowbotham and Fields. 1989*)

Post-herpetic neuralgia, a complication of herpes zoster, is a neuropathic pain syndrome resulting from a combination of inflammatory and viral damage to primary afferent fibers of sensory nerves. (*Opstetlen, Van Wijick and Stolker. 2004*)

The definition of post-herpetic neuralgia varies in the defined time period of the persistence of pain after the resolution of the rash (4-24 weeks) and thus the actual incidence is not known. (Yawn et al., 2007)

Introduction 2

Mixed inflammatory and neuropathic pain is experienced in acute HZ, whereas pain is highly predominant in PHN and the symptoms persist over time (*Rowbotham et al.*, 2001)

The clinical symptoms presented by these patients are very heterogeneous, and some are spontaneous while others are evoked. Spontaneous symptoms frequently include a constant deep and burning pain and an intermittent intense and lacing pain throughout the painful area, leaving it hypersensitive and painful for some minutes. Other disagreeable symptoms are pruritus and painless, but nevertheless disabling sensations of coldness or numbness (*Treede et al.*, 2008)

Unfortunately, no treatment has been shown to completely prevent post-herpetic neuralgia, yet some treatments may shorten the duration or lessen the severity of symptoms (*Jericho. 2009*).

Aim of the essay

The aim of this essay is to improve knowledge about pathogenesis and management of Post-Herpetic Neuralgia. Therefore, it is important to emphasis on the fact that anticipating such disease would be associated with a better outcome.

Virology Background

Introduction:

The herpesvirus family contains several of the most-important human viral pathogens. Clinically, the herpesviruses exhibit a spectrum of diseases. Some have a wide host-cell range, and others have a narrow host-cell range. (*Baines.2011*)

The outstanding property of herpesviruses is their ability to establish lifelong persistent infections in their hosts and to undergo periodic reactivation. Their frequent reactivation in immunosuppressed patients causes serious health complications. Curiously, the reactivated infection may be clinically quite different from the disease caused by the primary infection. (*Baines.2011*)

Herpesviruses possess a large number of genes, some of which have proved to be susceptible to antiviral chemotherapy. The herpesviruses that commonly infect humans include herpes simplex virus types 1 and 2 (HSV-1, HSV-2), varicella- zoster virus, cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpesviruses 6 and 7, and herpesvirus 8 (Kaposi sarcomaassociated herpesvirus [KSHV]). (*Espy et al.*, 2006)

Herpes B virus of monkeys can also infect humans. There are nearly 100 viruses of the herpes group that infect many

different animal species. (Huff and Barry.2003)

PROPERTIES OP HERPESVIRUSES

- **❖** Important Properties of Herpesviruses
- **Virion:** Spherical, 150-200 nm in diameter (icosahedrai)
- **Genome:** Double-stranded DNA, linear, 125-240 kbp, reiterated sequences
- **Proteins:** More than 35 proteins in virion
- Envelope: Contains viral glycoproteins, Fc receptors
- Replication: Nucleus, bud from nuclear membrane
- **Outstanding characteristics:**
- Encode many enzymes
- Establish latent infections
- Persist indefinitely in infected hosts
- Frequently reactivated in immunosuppressed hosts
- Some cause cancer

(Baines.2011)

Structure and Composition

Herpesviruses are large viruses. Different members of the group share architectural details and are indistinguishable by electron microscopy. All herpesviruses have a core of double-stranded DNA, in the form of a toroid, surrounded by a protein coat that exhibits icosahedral symmetry and has 162 capsomeres. The nucleocapsid is surrounded by an envelope that is derived from the nuclear membrane of the infected cell and contains viral glycoprotein spikes about 8 nm long. An amorphous, sometimes asymmetric structure between the capsid and envelope is designated the tegument. The enveloped form measures 150-200 nm; the "naked" virion, 125 nm. (*Baines.2011*)

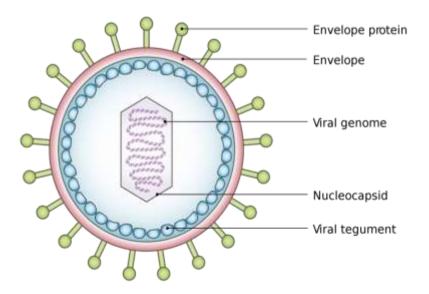


Figure (1): Structure of Herpesvirus.

The double-stranded DNA genome (125-240 kbp) is linear.

A striking feature of herpesvirus DNAs is their sequence arrangement. Herpesvirus genomes possess terminal and internal repeated sequences. Some members, such as the HSVs, undergo genome rearrangements, giving rise to different genome "isomers." The base composition of herpesvirus DNAs varies from 31% to 75% (G+C). (*Baines.2011*)

There is little DNA homology among different herpesviruses except for HSV-1 and HSV-2, which show 50% sequence homology, and human herpesviruses 6 and 7 (HHV-6 display limited (30-50%) sequence which and HHV-7), homology. Treatment with restriction endonucleases yields characteristically different cleavage patterns for herpesviruses and even for different strains of each type. This "fingerprinting" of epidemiologic tracing of a given strains allows strain. (*Baines.2011*)

The herpesvirus genome is large and encodes at least 100 different proteins. Of these, more than 35 polypeptides are involved in the structure of the virus particle; at least 10 are part of the viral envelope. Herpesviruses encode an array of virus-specific enzymes involved in nucleic acid metabolism, DNA synthesis, gene expression, and protein regulation (DNA polymerase, helicase-primase, thymidine kinase, transcription factors, and protein kinases). Many herpesvirus genes appear to be viral homologs of cellular genes. (*Gulley and Tang.2008*)