Comparative Study Between Pulse Oximetry And Transcutaneous Oxygen Tension Measurments In Neonatal Oxygen Monitoring

Thesis
Submitted In Partial Fulfilment
For the M.S.C. Pediatrics

By Azza Mohamed Said El-Ashmawi M.B.B. ch Ain Shams University

Supervisors

Prof.Dr.Saadia Abdel Fattah Prof. Of Pediatrics Ain Shams University

Prof.Dr. M.Hamza El-Ahl Prof And Chairman Of Pediatrics Military Medical Academy

Ass. Prof. Dr. Sherin Abdel Fattah Ass. Prof. of Pediatrics Ain Shams University

CONTENTS

			Page
	ACKNOW	VLEDGEMENT	
	LIST OF	ABBREVIATIONS	
	LIST OF I	FIGURES	
	LIST OF	ΓABLES	
1.	INTRODU AND AIM	JCTION OF THE WORK	1
2.	REVIEW (OF LITERATURE	4
	Chapter I	: Physiology of Oxygen	
	1-	Oxygen Monitoring	4
	2-	Terminology	6
	3-	The Normal Arterial Oxygen Tension	9
	4-	Physiology of Blood gases	11
	5-	Mechanism of Gas Transport	16
	6-	Factors Affecting Oxygen Transport	18
	7-	Factors Influencing Arterial Oxygen Tension	22

		Page
Chapt	er II : Ventilation	24
1-	Control of Ventilation	24
2-	Factors Opposing Ventilation	27
3-	Pulmonary Perfusion	28
4-	Asphyxia Hypoxia Hyperpoxia	30
5-	Oxygen Therapy For The New Born	37
6-	The Toxicity of Oxygen	38
7-	Respiratory Acidosis	43
8-	Respiratory Alkalosis	45
Chapte	er III : Oxygen Monitoring	46
1-	Monitoring	46
2-	Monitoring the Clinical Use of Oxygen	47
2.1	Methods of Monitoring	47
2.1.1	Umbilical Artery Catheterization	47
2.1.2	Temporal Artery	55
2.2	Methods of Indirect Monitoring by:	55
	1) Transcutaneous Oxygen Tension monitor	710
	2) Pulse Oximeter	
Chapte	r IV: Transcutaneous Oxygen Tension	57
l-	Historical Review	57
2-	Anatomical Relationship	58
3-	Transcutaneous Oxygen Electrodes	61
	Applying Electrodes to the Skin	66
_	Contraindications to Transcutaneous gas Monitoring	68
-	Factors Affecting TCPO ₂ / PAO ₂	71

		Pag
	<u>Chapter V</u> : <u>Pulse Oximeter</u>	
1-	Introduction	77
2-	Historical Review	
3-	Physiology of Pulse Oximetry	79
4-	Microprocessor of a Pulse Oximeter	81
5-	Limitations of Pulse Oximetry	82
6-	Advantages of Pulse Oximetry	83
7-	Factors Affecting the Performance of Pulse Oximeter	84
8-	Relationship between Measured SaO ₂ &	85
	Pulse Oximeter SaO2	87
9-	Features to Consider in Selection of a Pulse Oximeter	20
10-	Non-Physiological Effects on SPO ₂ Measurement	88
3.	SUBJECTS AND METHODS	89 90
J.	RESULTS	
		95
•	DISCUSSION	106
• .	SUMMARY AND CONCLUSION	111
	REFERENCES	114
	ARAB SUMMARY	

This simple work is dedicated to my Mother and my Husband, who were always a major driving force and support to me and to whom I owe my success

ACKNOWLEDGEMENT

It has been a great honour and extreme pleasure for me, to proceed with this work under the supervision of Prof. Dr. Saadia Abdel Fattah, Prof. of Pediatrics of Ain Shams University, for her precious guidance, great support, enormous help, and kind supervision.

I have no adequate words to express my indebtness for the close supervision, tremendous effort, active participation and kind encouragement of Prof. Dr.M.Hamza Saed El Ahl, Prof. and chairman of Pediatrics Military Medical Academy.

I wish to express my sincere gratitude to Dr. Sherine Abdel Fattah, Assist.Prof. of Pediatrics, Ain Shams University who devoted much of her time to enlighten me to the way of scientific research and without her endless efforts this work would not have been completed.

Lastly, I would like to thank Dr. Sami El-Sheamy, Assist. Prof. of Pediatrics, Ain Shams University for his effort in this work.

Thanks for all who are present and devoted much of their time to attend the discussion of my thesis.

LIST OF ABBREVIATIONS

% Sat Percent Saturation СОНЬ Carboxyhaemoglobin =

F.T. = Full term

FIO₂ Fractional Concentration of O2 in Inspired Air

HbHaemoglobin

HB-O2 Curve Haemoglobin Oxygen Dissociation Curve

HbF Fetal Haemoglobin HbO2 Oxyhaemoglobin = I.R Infra Red

ICUs Intensive Care Units ITU Internal Data Storage

KPa Kilopascalss

LEDs Light Emitting Diodes Met Hb Methaemoglobinemia **NICU** Neonatal Intensive Care Unit

nmNanometer P.T Preterm

PaO2

PACO₂ Alveolar CO2 Tension

Arterial Oxygen Partial Pressure PAO₂ Partial Pressure of Oxygen PCO₂ Partial of Pressure CO2 PIO2 Inspired Oxygen Tension PVO₂ Mixed Venous Oxygen Tension R Respiratory Exchange Ratio **RLF** Retrolental Fibroplasia ROP

Retinopathy of Prematurity SaO2 Arterial Blood Oxygen Saturation

SPO2 Pulse Oxygen Saturation

tcPO2 Transcutaneous Oxygen Partial Pressure =

V/Q Ventilation Perfusion Ratio = VDPhysiological Dead Space =

VT Tidal Volume

LIST OF TABLES

	Page
Table No. 1	9
Table No. 2	10
Table No. 3	32
Table No. 4	56
Table No. 5	72
Table No. 6	72 78
Table No. 7	76 96
Table No. 8	96
Table No. 9	90 97
Table No. 10	97
Table No. 11	98
Table No. 12	99
LIST OF FIGURE	E <u>S</u>
Figure No. 1	12
Figure No. 2	14
Figure No. 3	15
Figure No. 4	20
Figure No. 5	21
Figure No. 6	22
Figure No. 7	51
Figure No. 8	62
Figure No. 9	100, 101
Figure No. 10	102, 103
Figure No. 11	104, 105

1. INTRODUCTION AND AIM OF THE WORK

1. INTRODUCTION

Continuous monitoring of oxygenation in infants with cardio-respiratory problems is vitally important (*Michael S.Jennis and Joyce et al 1987*).

Avoiding both hypoxia and hyperoxia is a major goal in the management of infants with prolonged oxygen dependency. Blood gas monitoring by repeated arterial sampling carries significant risks, is technically difficult, and provides intermittent information only (Alfonso et al 1986).

Currently the most frequently used non-invasive device for measuring the arterial oxygenation is the TCPO₂ monitor. This allows for continuous measurements, but response time varies, frequent calibration is necessary, and change of site is required to prevent skin damage. There may be a poor correlation with PaO₂, depending on site of electrode, oxygen levels, cardiac output, peripheral perfusion, and condition of the skin (*Beran A.V. et al 1971*).

Arterial SaO₂ can be measured non-invasively with oximetric techniques (Sergio Fanconiet al 1985).

The pulse oximeter which is a newly available monitor, continuously and non-invasively measures the oxygen saturation (SaO₂) of arterial haemoglobin (*YoshiyaI et al 1980*) beat by beat. This devise uses spectrophotometric power principles to determine SaO₂ with each arterial pulsation. (*Michael S. et al 1987*).

Pulse oximetry functions by positioning a pulsating arterial vascular bed between a two wave length light and light detecting sensor. The difference in light absorbance between reduced haemoglobin and oxyhaemoglobin is measured in phase with arterial pulsation (Alfonso et al 1986).

In general these reports have been favorable regarding the application of pulse oximetry to neonatal oxygen monitoring, emphasizing the easy application of SPO₂ probes, lack of instrument calibration requirement, in frequency of cutaneous injury as their sensor is unheated so they will not cause skin burns, rapid response of SPO₂ to changes in blood oxygenation, and significant correlation of SPO₂ and SaO₂ (William et al 1989).

AIM OF THE WORK

This work is designed to study neonatal oxygen monitoring by the use of pulse oximetry and transcutaneous oxygen measurement.

The study will evaluate and compare the two methods with relevance to, accuracy, reliability and how well does the pulse oximeter compare with currently non-invasive, continuous TcPO₂.

2. REVIEW OF LITERATURE
Chapter I
Physiology of Oxygen

CHAPTER I

1.	OXYGEN MONITORING
2.	TERMINOLOGY
3.	THE NORMAL ARTERIAL OXYGEN TENSION
4.	PHYSIOLOGY OF BLOOD GASES.
5.	MECHANISM OF GAS TRANSPORT
6.	FACTORS AFFECTING OXYGEN TRANSPORT
7.	FACTORS INFLUENCING ARTERIAL OXYGEN TENSION

Central Library - Ain Shams University