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SUMMARY

It is supposed that we have initially an INFINITE
mass at rest of a VISCOUS fluid of finite electrical

conductivity in which a uniform field is prevailing.

ﬁo
It is supposed then that a dipole ¢f moment Y is suddenly
introduced in the above configuration of the system. As

a result of this sudden introduction a velocity U is
produced in & certain volume of the fluid as well a8 =&
small disturbance g.of Hy+ The dip¥le, whose axis is
always taken in the z~direction, can be replaced by 2 small
current leop im the (x,y)-plane, of strength I, radius a,

with its centre always fixed at the origin of ccoordinates,

and such that

i

1A T 8% T eie eer een ee. (D)
et 0

u

H

L=1,16(Pa) « 5H(E) wvr wer 2ew (D)

where ;¢ is a unit vector in the direction of 4 increasing,
(#, &, z) are cylindrical polar coordinates, H(t) is the
Beaviside unit function, and & is Dirac's delbta functioen.
Only the BEYMMETRIC case, where the uniform field H, is
always taken ﬁarallel to the z-axis, parallel to the dipole

axis, is dealt with.
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SYMMETRIC CASE

Uniform field go = H° 1, parallel to the dipole axis

In chapter I df thie work boundary conditions on
crossing the loop have been introduced in the basic equations
used, namely Maxwell's equations and the Eulerian hydro-
dynamic equation. |

In chapter II, mathematical soluticns representing
the bebaviour of both U and h have been re-studied in the
case where a MAGNETIC dipole bas been suddenly introduced.
Extensive figures calculated from the obtained mathematical
results have been drawn. The behaviour of the resulting
magnetohydrodynamic disturbances h as well as of fluid
motion U have been traced of different iuntervals of time.

It is worth to note here that the figures so obtained,

in the case of a VISCOUS fluid, show that the effect of
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viscosity in the case of an infinite fluid, is oot of
great importance. In fact, it is found that there 1s a
great similarity between the behaviour of both U and b
in this case and those obtained by MOHANDIS (1959) in a
nonviscous fluid.

In chapter III the same problem has been solved for
a viscous fluid, but with the sudden introduetion of &n
OSCILLATING dipole instead of a magnetic one. This case
has been already published as a joint work in ILNUOVO
CIMENTO (1969), Series X, Vol. 598, pp. 1-11l. It is seen
that the solution of the problem of an oseillating dipole
is much more difficult than that of a2 magnetic one. A new
tedious effort is needed to represent the obtained mathematical

results in a form suitable for computation.
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CHAPTER 1
DIPOLE IN A VISCOUS FLUID

§ I.l- FUNDAMENTAL EQUATIONS

The phenomena can be described by using Maxwell's
equations aud the Bulerian hydrodynamic equation.
Maxwell's equations in this case and in the presence of
s moving electrically conducting matter with veloeity U

and electrical conductivity o are @

Curl E=-9% B/ 3t (3)
Curl H = 4J cos eer  ses (4}
where J=0g (BE+IND cer  aee (5)
also div H=20 ree coo oo (&)
divd =0 (7

where E is the

electric field, J the clectric current and

4 is the magnetic field.

Making the substitution

H=H +1h (8)

where h ¢« i, ‘e cer  eve (9)
div h = 0 “eo (10)
Eo""Ho-:-I'-z "o oo ces (11)
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where L, is a unit vector in the direction of z, teking
the curl of equations (4) and (5), substituting in equation
(3), epplying conditicns (6) and (7), we see on neglecting

squares and products of U and h, that

>
(r - 72z VOB = (Eeead T .o ..o (12)

The Eulerian hydrodynamic equation in the casse of an

incompressible viscous fluid is

/o_g__%_=§- o+ PYVEU ees  (13)

where the moving matter is considered to be of density £
hydrostatic pressure p, and kinematic viscosity Y.

Also the equation of conbtinbuity shows that

divI_I_:O ’ ces s se s (14)

The pondermotive force acting oun the loop is
E_:_J_A.I_'I_ “s e T R (15)

Substituting from equations(8) and (15) in equation
(13), we see on neglecting squares and products of U (the

fluid velocity), and of h (the magnetic perturbation), that

28 L 22 ] 1 2 2
<t Twe > 2 - grad p‘[p+g;(§1_o+g):l+)/v U (16)
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Putting
E_:-—' grad :;: ] LE R L] se e (17)
where
- 1 2
r = """‘%— [p + -8? (H"‘O + I:_}_) ], e (18)

taking the divergence of equation (16) and using conditions

(10) and (14), we find that
diV_E_:O. sss LR s e (19)

Tt is found more convenient to express equations
(12) and (16) in non-dimensional units. This can be done

by introducing new variables defined by

h=Hp', U=VD, B=wlp
O ] ? 0 ) 2 (20)

tt= Wot ¥ £=LUOI»"/V! Y= )“ve/wo r S

where V is the Alfvén velocity given by
2 2
V =HO/47TP R s e e (21)
and w is a frequency defined by

wO=GH§/p e wa eas ess (22)

Henceforth the primes will be omitted.
Taking z as a co-ordinate measured in the direction

of H_, the basic equations (12) and (16 , in terms of
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these nondimensional quantities become

(b/}t-va)g-.:zg/bz. ees  (23)

dU/dt =3/ Bz + B+ YVEL ves  (24)
Introducing the sclenoidal vectors y , X andé such that

]:_1.= C'Llrl w [ g: Gurlx “o 0 ¢ e (25)

and

E

curl ¢ see .ee . (26)

equations (23) and (24) reduce respectively %o the form
(b/bt-va)f= a-ﬂéz * ') seas (27)
(P/36 -YTDX =dw/dz+& . ... (28)

Since P has been expressed in equation (17) as the gradient

of a scalar quantity, it follows from egquation (26) that

vee =o. O 1)

§ T.2~ INTHGRAL TRANSFORMS USED

1. The Heaviside transform denoted by broken brackets

around the transformed symbol. It is defined by

Calzm)> =1 | az,b) exp(-pt)at (50)
O
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Integration by parts shows that

<ra/pt>ap(La>=~a,) s

< %2e/ 383> = pA(Kay - 7)) - paps
where

a4 = 3(1"0)! al = 2 a(r,o)/bt ’

a, and ay will bc neglected in our results, since initially

the field is uniform and the liquid is at rest.

2. The Hamkel transform denoted by a super—
script star, thus :
s ]
H (g ait) = §a(P Lz (E AP (31)
0
the inversion to which is
(P mt) = | HEu® LA, 6D
0 u
3, The Fourier transform denoted by & superscript dagger,
thus;
+ ing
at(£ ,n,t) = [m a( & ,z,t)e dz. (33)
%;’ ' e ‘%! ’

T4 follows from the Fourier integral theorem that

a(§, 42,t) = E% foo zat"'(fé',n,t)e"inZ dn.
-0

4. The double Fourier treasform denoted by a superscript

star, thus
¢ o)
E(f,1,2,8) = (X792 b) i(fx ¢ my)| dxdy (34)
Y mnn = 8 @ gt (100 ] axay

the solution to which is

W(Xsyiz!t) = :;."1!.'2- }:z (.Vx(fﬂnozat) exp[-i(fx+m3)] dfdm
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§ I.3- TO DEFINE 1™

Let I, and Iy be the x and y components of I as

defined in the summary by

;:;_,qlﬁ(f’-a). H(t) ;
then

-_I_Sina' Iy=:_[_008¢ .e

I,

Let { = & cos a, m=% gin a

then

£2 = n®

and f X + 0y = ,Fi’cos (¢ - o)

P

also

Ifc:—ilxsina.I?:i_I_gcoaa

It then follows that

_I_“:iI:sina-i'I’;cosu

L )

L

(35)

(36)

(37)

Applying the double Fourier transform denoted by equation

(34) to equatioms (35) and substituting in equation (37),

to obtain values for I:f: and Ii;,, we have

#
IX

~ ial sin a Jl(a a)
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aleo

® . ;
Iy = ia I cos @ J]_(a%)

and

.I.;!: gM s ves sew (38)

& I,.4~ THE BOUNDARY CONDITIONS
On crossing the plane z = 0, certain bouadary con-
ditiors have to be satisfied at the loop, these can be

derived as follows. BSince

h = curl (ng(f’ 1Z,%) ,0)

and since
(LAR, - (LAD)_ = 4% 1 15 8(fP~a),
therefore
\_}-J+ - 8—)_ = 0 e s »es ses (59)
and
2 ¥ > ¥ -
( ST )+- ('ﬁs-g- )_ = 4711y 8(F -a) (40)
Since
U = curl (0, X (£ ,2,5),0),
thercfore
- =0 asae se 8 s 41
?9+. 2&_ (41)
and
(2E 22y L (42)
» 2 +" W 2 o
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