THE MUTAGENIC EFFECTS OF SOME PESTICIDES THROUGHOUT THE ONTOGENY OF THE HOUSEFLY MUSCA DOMESTICA DUE TO DIFFERENCES IN THE CHEMICAL NATURE

STY STY

A THESIS

Presented to the Faculty of Science for the Award of the Ph. D. Degree

By

Amani Soliman Khalid Soliman

(B. Sc., M. Sc.)

91265

Department of Entomology
Faculty of Science
Ain Shams University
1994

THESIS	EXAMINATION	COMMITTEE
NAME	TITLE	SIGNATURE
SUPERVISOR		<i>x</i>
Prof. Dr. Naima	A. Abdel-Razik	pai -
Prof. Dr. A. X.	El-Abidin Salam	10)-2. E. Salall
Lect. Dr. S. A.	Mansour	
Lect. Dr. Thoray	ia F. K. El-Naga	* Thoray ia

HEAD OF DEPARTMENT

Prof. Dr. Bahira M. El-Sawaf

Dedication

I have a great honor to dedicate this dissertation and the including research to the spirit of my Professor, Prof. Dr. Awni Mohamed Suneidy. To whom I am really indebted for all I have learned in both moral and scientific aspects.

Amani S. Kh. Soliman

BIOGRAPHY

Date and place of birth

: 2nd November, 1962, Cairo

Date of Graduation

: June, 1983

Degree Awarded

: M. Sc. (Entomology)

Occupation

: Assistant lecturer in Entomology

Department, Faculty of Science, Ain

Shams University.

Date of Registration for

The Ph. D. degree

: September, 1991.

Acknowledgment

The author is very much indebted and obliged to Professor Dr. A. El-Abidin Salam, Professor of Genetics, Faculty of Agriculture, Ain Shams University for his valuable help and kind encouragement, for reading and correcting the manuscript.

Grateful appreciation is also due to Professor Dr. Naima A. Abdel-Razik, Professor of Entomology, Faculty of Science, Ain Shams University for her faithful encouragement and help during the progress of this study.

Thanks also to Dr. Saad A. Mansour, Lecturer of Genetics, National Research Center for his valuable help.

I wish to express my greatest deep thank to Dr. Thorayia J.K. El-Nagar, Lecturer of Entomology, Faculty of Science, Ain Shams University for her direct supervision of this work, for her valuable advice and kind encouragement and help during the progress of this study.

Special thanks are due to my colleagues in the Department of Entomology, Faculty of Science, Ain Shams University and to any one who encouraged and helped me during this study.

Abstract

The present work designed to study the mutagenic effect of three insecticides: zolone, cidial and hostathion on Musca domestica using two protocols, dominant female sterility and isozymes variations for the four enzymes: Me, α -Gpdh, Ldh and Mdh using starch gel electrophoresis.

It is clear from all the data gained by these protocols that the three used insecticides have no effects on the fertility of females and have no mutagenic effects on Me enzyme. On the other hand, they have mutagenic effects on α -Gpdh, Ldh and Mdh enzymes when adult *Musca domestica* flies were treated.

<u>Key words</u>: *Musca domestica* - Dominant female sterility - Isozymes variations - Malic enzyme (Me) - α-Glycerophosphate dehydrogenase (α-Gpdh) - Lactate dehydrogenase (Ldh) - Malate dehydrogenase (Mdh).

List of abbreviations used in this thesis:

EDTA: Ethylene diamine tetra acetic acid disodium salt..

Ci : Cidial.

 α -Gpdh: α - Glycerophosphate dehydrogenase.

HCl: Hydrochloric acid.

Ho: Hostathion.

Ldh : Lactate dehydrogenase.

Mdh : Malate dehydrogenase.

Me : Malic enzyme.

Mg Cl₂: Magnesium chloride.

NAD : Nicotinamid adenine dinucleotide

NADP: Nicotinamid adenine dinucleotide phosphate.

NBT : Nitro blue tetrazolium.

PMS: Phenazine methosulphat.

Na₂ CO₂: Sodium carbonate.

Tris: Tris - hydroxy - methyl aminomethane.

Zo : Zolone

LIST OF TABLES

	P	age
Table	(1): Percentage of mortality induced by different concentrations of zolone, cidial and hostathion in adults of Musca domestica	21
Table	(2): The induced female sterility in the females of F ₁ generation after the treatments of the adults laboratory strain of <i>Musca domestica</i> with LC ₅₀ of various insecticides	33
Table	(3): The percentage of different genotypes and allele frequencies of Me in adults laboratory strain of <i>Musca domestica</i> in control and different crosses under different treatments	3 8
Table	(4): The percentage of different genotypes and allele frequencies of α-Gpdh in adults laboratory strain of Musca domestica in control and different crosses under different treatments	51
Table	(5): The percentage of different genotypes and allele frequencies of Ldh in adults laboratory strain of <i>Musca domestica</i> in control and different crosses under different treatments	70
Table	(6): The percentage of different genotypes and allele frequencies of Mdh in adults laboratory strain of <i>Musca domestica</i> in control and different crosses under different treatments.	89

LIST OF FIGURES

		Page
Figure	e (1): Histogram represents the percentages of dominant female sterility in F1 females of <i>Musca domestica</i> which have been induced either spontaneously or due to different treatments by the three pesticides	34
Figure	(2): Electrophoretic patterns of Me in adults laboratory strain of <i>Musca domestica</i> (N δ × N φ) showing one zone of enzyme activity and one genotype	37
Figure	(3): Histogram representing the frequency distribution of Me allele in adults laboratory strain of Musca domestica in control and different crosses under different treatments	39
Figure	(4): Electrophoretic patterns of Me in adults laboratory strain of <i>Musca domestica</i> treated by zolone (T _{zo} & × T _{zo} q) showing one genotype	41
Figure	(5): Electrophoretic patterns of Me in adults laboratory strain of <i>Musca domestica</i> treated by zolone (T _{zo} d × N o) showing one genotype	41
Figure	(6): Electrophoretic patterns of Me in adults laboratory strain of Musca domestica treated by zolone (N δ × T _{zo} Q) showing one genotype	43
Figure	(7): Electrophoretic patterns of Me in adults laboratory strain of <i>Musca domestica</i> treated by cidial $(T_{ci} \delta \times T_{ci} \rho)$ showing one genotype	/3

Figure	(8): Electrophoretic patterns of Me in adults laboratory strain of <i>Musca domestica</i> treated by cidial (T _{ci} δ × N φ) showing one genotype	44
Figure	(9): Electrophoretic patterns of Me in adults laboratory strain of <i>Musca domestica</i> treated by cidial (N $\delta \times T_{ci} \varphi$) showing one genotype	44
Figure	(10): Electrophoretic patterns of Me in adults laboratory strain of $Musca$ domestica treated by hostathion $(T_{ho} \delta \times T_{ho} \phi)$ showing one genotype	46
Figure	(11): Electrophoretic patterns of Me in adults laboratory strain of $Musca$ domestica treated by hostathion $(T_{ho} \delta \times N \ p)$ showing one genotype	46
Figure	(12): Electrophoretic patterns of Me in adults laboratory strain of $\textit{Musca domestica}$ treated by hostathion (N $\delta \times T_{\text{ho}} Q$) showing one genotype	48
Figure	(13): Electrophoretic patterns of α-Gpdh in adults laboratory strain of <i>Musca domestica</i> (N δ × N φ) showing one zone of enzyme activity and one genotype	50
Figure	(14): Histogram representing the frequency distribution of α-Gpdh alleles in adults laboratory strain of <i>Musca domestica</i> in control and different crosses under different treatments	52
Figure	(15): Electrophoretic patterns of α -Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by zolone $(T_{zo} \delta \times T_{zo} \varphi)$ showing two genotypes	54
Figure	(16A): Electrophoretic patterns of α -Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by zolone (T_{z0} $\delta \times N$ o) showing two genotypes	55

Figure (16B): Electrophoretic patterns of α -Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by zolone $(T_{zo} \delta \times N \phi)$ showing the disappearance of banding patterns of two flies	55
Figure (17): Electrophoretic patterns of α-Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by zolone (N δ × T _{zo} φ) showing two genotypes and disappearance of banding patterns of one fly	57
Figure (18A): Electrophoretic patterns of α -Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by cidial $(T_{ci} \ \delta \times T_{ci} \ \varphi)$ showing three genotypes	58
Figure (18B): Electrophoretic patterns of α -Gpdh in adults laboratory strain of $\textit{Musca domestica}$ treated by cidial $(T_{ci} \ \delta \times T_{ci} \ \varrho)$ showing the disappearance of banding patterns of two flies	58
Figure (19): Electrophoretic patterns of α -Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by cidial $(T_{ci} \ \delta \times N \ \varrho)$ showing three genotypes	60
Figure (20): Electrophoretic patterns of α -Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by cidial (N $\delta \times T_{ci} \varphi$) showing two genotypes	60
Figure (21A): Electrophoretic patterns of α -Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by hostathion $(T_{ho} \ \delta \times T_{ho} \ \phi)$ showing two genotypes	62
Figure (21B): Electrophoretic patterns of α -Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by hostathion ($T_{ho} \delta \times T_{ho} \varrho$) showing the disappearance of banding patterns of two flies	62
Figure (22A): Electrophoretic patterns of α -Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by hostathion $(T_{ho} \delta \times N \Omega)$ showing three genotypes	64

Figure	(22B): Electrophoretic patterns of α -Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by hostathion $(T_{ho} \delta \times N \ \underline{o})$ showing the disappearance of banding patterns of some flies	64
Figure	(23): Electrophoretic patterns of α -Gpdh in adults laboratory strain of <i>Musca domestica</i> treated by hostathion (N $\delta \times T_{ho} \circ$) showing three genotypes	66
Figure	(24A): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> (N $\delta \times N \phi$) showing the homozygote genotype	69
Figure	(24B): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> (N $\delta \times N \circ$) showing the heterozygote genotype	69
Figure	(25): Histogram representing the frequency distribution of Ldh alleles in adults laboratory strain of <i>Musca domestica</i> in control and different crosses under different treatments.	71
Figure	(26A): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by zolone $(T_{zo} \ \vec{\sigma} \times T_{zo} \ \underline{\phi})$ showing the homozygote genotype, Ldh ^{AA}	73
Figure	(26B): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by zolone (T _{zo} $\delta \times T_{zo} \rho$) showing two genotypes and disappearance of the banding patterns of one fly	73
Figure	(27): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by zolone (T _{zo} δ × N φ) showing two zones of enzyme activity	
	with three genotypes	75

Figure	(28A): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by zolone $(N \ \vec{\delta} \times T_{zo} \ \underline{\varphi})$ showing two genotypes	76
Figure	(28B): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by zolone (N $\delta \times T_{zo} \varphi$) showing two genotypes and disappearance of the banding patterns of one fly	76
Figure	(29A): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by cidial (T _{ci} $\eth \times$ T _{ci} \wp) showing two genotypes	78
Figure	(29B): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by cidial $(T_{ci} \ \delta \times T_{ci} \ \varphi)$ showing the disappearance of the banding patterns of five flies	78
Figure	(30): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by cidial (T _{ci} δ × N q) showing two genotypes	79
Figure	(31A): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by cidial (N $\delta \times T_{ci} \ Q$) showing two genotypes	81
Figure	(31B): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by cidial (N δ × T _{ci} φ) showing the disappearance of the banding patterns of one flies	81
Figure	(32): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by hostathion $(T_{ho} \delta \times T_{ho} \rho)$ showing three genotypes.	83
	The time general time general time general time general time.	00

Figure	(33): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by hostathion (Tho δ × N φ) showing two genotypes and disappearance of the electrophoretic patterns of some flies	83
Figure	(34): Electrophoretic patterns of Ldh in adults laboratory strain of <i>Musca domestica</i> treated by hostathion (N $\delta \times T_{ho} \varphi$) showing three genotypes	85
Figure	(35): Electrophoretic patterns of Mdh in adults laboratory strain of <i>Musca domestica</i> (N $\delta \times$ N ϱ) showing two zones of enzyme activity with three genotypes	88
Figure	(36A): Histogram representing the frequency distribution of Mdh alleles of the 1st locus in adults laboratory strain of <i>Musca domestica</i> in control and different crosses under different treatments	90
Figure	(36B): Histogram representing the frequency distribution of Mdh alleles of the 2 nd locus in adults laboratory strain of <i>Musca domestica</i> in control and different crosses under different treatments	91
Figure	(37): Electrophoretic patterns of Mdh in adults laboratory strain of <i>Musca domestica</i> treated by zolone $(T_{zo} \ \delta \times T_{zo} \ \varrho)$ showing five genotypes and one cathodal band	93
Figure	(38A): Electrophoretic patterns of Mdh in adults laboratory strain of <i>Musca domestica</i> treated by zolone $(T_{zo} \delta \times N \circ)$ showing four genotypes	95
Figure	(38B): Electrophoretic patterns of Mdh in adults laboratory strain of <i>Musca domestica</i> treated by zolone (T _{zo} δ' × N ο) showing four genotypes and disappearance of anodal and cathodal bands of one fly	95