
A THESIS ENTITLED

ADSCRPTION IN RELATION TO PORE STRUCTURE OF VARIOUS ALUMINAS

Presented By

THORAYA ABD EL-KADER OMER EL-NABARAWY

(B. Sc. Hons., M.Sc.)

To

7217

The Faculty Of Science, Ain Shans University

For

The Degree Of

DOCTOR OF PHILOSOPHY IN CHEMISTRY

(Ph. D.)

NATIONAL RESEARCH CENTRE

DOKKI - CAIRO - ARAB REPUBLIC OF EGYPT

1975

ADSORPTION IN RELATION TO PORE STRUCTURE OF VARIOUS ALUMINAS

Thesis Advisors

Thosis Approved

Prof. Dr. R. Sh. Mikhail ... R. M. M.

Prof. Dr. A.A. Abdul-Asim

Prof. Dr. A. Fateen

Head of Chemistry Dept.

70

My Dear Brother Mohammed

ACKNOWLEDGEMENT

I wish to express my deep sense of gratitude to Dr. R. Sh. Mikhail, Professor of physical chemistry, Daculty of Science, Ain Shams University, for suggesting this work and for his continual interest, encouragement, valuable and helpful advice during this work.

My deep gratitude to Dr. A.A. Abdul Azim, Professor of Electrochemistry, National Research Centre for his helpful advice.

I am also much indebted to Dr. A.M. Youssef, National Research Centre for his kind Co-operation and moral support.

Thanks are also due to Dr. S.A. Selim, Department of Chemistry, Ain Shams University for her encouragement in completing this work.

I am also grateful to the National Research Centre for granting a scholarship which enabled me to carry out the present investigation.

CONTENES

		pag.
CONFRER I	Introduction	7.
T A	Alsorption and perous textures of aluminas .	n*
T. a.	acidity and catalytic activity of aluminus	
į	and silica-aluminas	1.4
E-0.	the object of investigation	23
I-D. I	References	$e^{M_{\rm L}}$
. 1.3140 (1.1	I. Experimental	
. J. 4.	Materials	(ر
1 <u>1</u> ± .	Apparatus and Techniques	ž1-
110 0	References	42
olekubb II	II. Methods of Assessment of Both Micro one wide Pores and their Specific surface Areas	
777-1	Evaluation of the total surface area by	
	the BET Method	7
771-	Detection of the Existence of Micro- and	
	wide popes and their assessment	25
J.TTL~C.	analysis of pores	=; 1
LIE-D.	References	
	Results and Discusion	85

Contents (Contd.)

· · · · · · · · · · · · · · · · · · ·	
	page
CHAPTER IV. Characterization of Structure of the Starting Materials	
IV-A. Differential thermal analysis	85
IV-B. X-ray analysis	88
IV-C. References	94
CHAPTER V. Adsorption Measurements	
V-A. Nitrogen and Argon adsorption	95
A.l. Nitrogen Adsorption	96
A.2. Argon adsorption	98
V-B. Benzene adsorption	101.
V-C. Water adsorption	108
V-D. Pore structure analysis	121
D.l. Analysis of the nitrogen adsurption isotherm	S
by means of the t-method	123
.D.2. Analysis of the nitrogen adsorption	
isotherms by the a-method	125
D.B. Pore volume distribution-effect of silica	100
coating and calcination temperature	128
V.C. References	1,8

Contents (Contd.)

· ·	
	page
CHAPTER VI. Acidity and Catalytic Activity	14]
VI-A. Evaluation of the number of acid sites from pyridine chemisorption	1/4
VI-B. Evaluation of the number of hydroxyl	
groups	14-5
VI-C. The cracking of cumene	146
VI-D. References	1.99
CHANTER VII. Summary and Conclusions	16]
Appendix	175
Arabic Summary	

Chapter I

INTRODUCTION

I- INTRODUCTION

General Introduction

The study of alumina is a subject of great importance because alumina is a large-volume product on the chemical worket. Although the major part of it is used in the production aluminium metal, an increasing amount is employed in other floreds, e.g. ceramics, abrasives, medicinals, adsorbents and catalysts. Products of the last two applications are generally called "potive alumina" and are the subject of this thesis.

Physical adsorption constitutes a very important means of is restigating the properties of heterogeneous catalysts.

Indeed, with the appearance and application of the BET theory the study of heterogeneous catalysis was given a significant impulse, because a reliable means of estimating the specific studies area (surface area per unit mass) of a wider range of catalysts became available. Physical adsorption also forms the basis of most of the numerous methods of seasoning the perosity of solids. Less widely appreciated has the each that physical adsorption can also enable deductions to be addeductional adsorptional amount of a solid surface which a snorgetically heterogeneous.

The importance of pore structure and surface area arises from the fact that the accessibility of a catalyst surface to reacting gases is of considerable importance in the selection of a solid material which is to function as an active catalyst for heterogeneous reaction. For a given catalyst, the greater the amount of the surface available to the reacting gases the batter is the conversion to products.

The adsorption and catalytic properties of alumina have been studied for some time and by 1945 an impressive mass of emperical information about the preparation and properties of aluminas was available. Insight into the fundamental problems, herefore, was lacking almost completely. Many studies were decided to developing reliable methods for the determination of "machivity", which was found to differ considerably not only from the various known adsorptive or catalytic processes but also from the many natural and synthetic alumina products available from the many natural and synthetic alumina products available from the classification of active aluminas for chromatographic purposes according to Brockmann and Schadder (1) (1941). This method, still used to day, was perfected and given a more regional base by Fortuin (2) (1955) and in recent years redified from one in thin layer chromatography (Hermanek et al (3),1961).

- 3 -

At the same time much effort went into elucidating problems concerning the thermodynamic and mechanistic aspects of adsorption and capalysis on alumina. But the contradicting results of most of these studies must be due primarily to a back of detailed information about the origin and thermal bistory of the active alumina used. The title of Frary's paper (1946). "Adventured with alumina", conveys a good idea of the situation at that time. But when strong interest for the more fundamental mobilems began, considerable knowledge was achieved, possible actives of improvements in X-ray and electron diffuraction and infrared spectroscopic techniques. The development of the theory of physical adsorption has further stimulated deeper and rais.

and catalytic activities such as crystal structure, pore texture and the chamical nature of the surface were largely determined the chamical nature of the surface were largely determined to the detailed points in the preparation of the alumina.

Active alumina is prepared mostly by a thermal dehydration procedure because it is probable that the properties of the converse products are strongly related to the structure and phology of the initial hydroxides.

I- A Adsorption and Porous Textures of Aluminas:

Direct information on the porous texture could in principle be obtained by direct observation in an electron microscope. However, the very small quantity to be used, the necessary high vacuum and the changes produced by strong impact of high voltage instructions limit the applicability of this method and usually only quantitative results can be obtained. Similar difficulties are experienced with other direct viewing methods, such as field emission microscope studies, which can be used only for some very special materials.

One of the most powerful approaches has been to gradually fir the page system with an adsorbate. Theories which can be used for the interpretation of adsorption phenomena are already available.

Small angle X-ray scattering has been used to study the prescribe size of the solids (Brindley and Nakahira (5) 1959).

The moadering of X-ray diffraction lines can give information along prystallite size and lattice defects (Beretka and Lidga (6), 1967; Devy and Bauer (7), 1967). Optical methods have been used the nuccess to study the orientation of the pore system (800ggarda (8), 1955, de Boar at al (9), 1956).

None of the above mentioned methods will in itself give and the adsorption of the porous texture and the adsorption method remains the most successful method.

- 5 **-**

Nitrogen adsorption isotherms of the dehydration products of the aluminium trihydroxides were extensively studied to learn about their porous texture (e.g. for gibbsite: Steggerda (8), 1955, de Boer et al (9), 1956; for bayerite: Lippens (10), 1961, de Boer and Lippens (11), 1964, Lippens and de Boer (12), 1964; for nordstrandite: Alderoft and Bye (13), 1967).

The crystalline trihydroxides have a low surface crea and per: volume; the shape of the isotherms is an agreement with a picture of loosely-packed non-porous particles with sizes of a few microns. When heated to just below the temperature at which the formation of low-temperature alumina starts, the ada rption isotherm shows that pores are formed. In this temperature region some well-crystallized boehmite is formed under incragranular hydrothermal conditions. In the case of globsite, which given the highest quantity of boehmite, these pores have been described as "ink bottle" type pores, with a large volume to harrow openings. In the case of bayerite and nordstrandite to se pores, as well as being much less abundant, are more slit-

Heated just above their decomposition temperature (250°C for published, 230°C for bayerite and nordstrandite) the nitrogen masorption at low relative pressures increases enormously. If

adsorption

surface area, values of up to 700 m²/g are obtained. From the/description isotherms it can be concluded that only a small part of this surface area is present in pores wider than 2011. The rest of the adsorbed nitrogen is present in micropore system.

Then heated at much higher temperature (above 550°C) the shape of the adsorption isotherms changes drastically. The BET surface area drops to about half of its highest value and the calculation of the surface area and pore volume from the desorption isotherms shows that the micropore volume decreases to a very low value.

The isotherms of the various aluminas were the first ones to which the Lippens-deBoer method (14) was applied. This nathod is based on the experimental fact that, when dealing with the multimolecular adsorption the adsorbed volume per unit surface area as a function of the relative vapour pressure of the edsociate that he represented by a single curve independent of the edge and. Necessary conditions for this to be valid are, no expellently condensation, no hindered adsorption in narrow pages to relative pressures higher than that required for a nearly fill so monelayers. The adsorbed volume per unit surface area in fact represents the average or statistical thickness t of the elsolved multilayer, hence the rame v-curve for this fundamen.