

« علم الانسان مالم يعلم . «

مدق الله انعظيم

سونة المعلق آية : ٥

Central Library - Ain Shams University

PRESENTMENT TO

MY MOTHER

AND

MY FATHER

STUDIES ON SOME POLY FUNCTIONAL FLUIDS AND THEIR USES

THESIS

SUBMITTED IN PARTIAL FULFILMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN CHEMISTRY

BY

TAISIR TAHA ALI KHEDRE

PRESENTED TO

W V

CHEMISTRY DEPARTMENT

GIRLS COLLEGE FOR ARTS, SCIENCE AND EDUCATION

AIN SHAMS UNIVERSITY

EGYPTIAN PETROLEUM RESEARCH INSTITUTE

CAIRO-EGYPT

1991

STUDIES ON SOME

POLY FUNCTIONAL FLUIDS AND THEIR USES

THESIS ADVISORS

APPROVED

PROF. Dr. ABOEL-KHAIR B.MOSTAFA.

Chemistry department. Girls College
for Arts, Science and Education
Ain Shams University.

A. Khai

PROF. Dr. ISMAIL ALI EL-MAGLY

Application Division, Egyptian

Petroleum Research Institute (E.P.R.I.)

James L.

PROF. Dr. FERIAL MOHAMED GHUIBA

Application Division, Egyptian

Petroleum Research Institute (E.P.R.I.)

Femil

Head of Chemistry Department

Margnente A. Wassef

ACKNOWLEDGEMENT

The author wishes to express her sincere apprecitation and deep gratitute to Professor Dr. ABO El-KHAIR B. MOSTAFA, Chemistry Department, Girls Gollege for Arts, Science and Education, Ain Shams University, for his support and valuable guidance throughout this work.

The author wishes to record her great thanks and sincere appreciation to professor *Dr. ISHAIL ALI El-MAGLY* Application Division, Egyptian Petroleum Research Institute [E.P.R.I.] Cairo, for suggesting the problem, direct supervision, continued interest and fruitful discussion throughout this work.

The author expresses also her many sincere thanks to Professor Dr. FERIAL MOHAMED GHUIBA, Application Division, Egyptian Petroleum Research. Institute [E.P.R.I.] Cairo, for sharing in suggesting the problem, her helping, direct supervision and revision of this work.

The acknowledgement is also expressed to the Special Application Laboratory and the Gas Chromatographic Analysis of the Egyptian Petroleum Research Institute where all the facilities have been provided for this research work to be carried out.

NOTE

Besides the work carried out in this thesis, the candidate has attended postgraduate courses in the following topics.

- 1. Photochemistry.
- 2. Quantum chemistry.
- 3. Spectroscopy.
- 4. Instrumental analysis.
- 5. Chemical Kinetics.
- 6. Thermodynamic.
- 7. Heterocyclic.
- 8. Natural product.
- 9. Organomettalic chemistry.
- 10. Advanced reaction mechanism.
- 11. German language.

She has successfuly passed a written examination in these courses, in partial Fulfillment for the degree of master of science.

CONTENTS

		PAGE
*	ACKNOWLEDGEMENT	I
*	AIM OF THE WORK	VIII
*	SUMMARY	. *
*	INTRODUCTION	XIII
	PART I:	
	Literature Review:	1
	- Hydraulic fluids:	1
	- Types of hydraulic fluids	4
	A) Petroleum oil based hydraulic fluids	4
	B) Non petroleum hydraulic fluids	7
	a) Aqueous based hydraulic fluids	7
	l. Water glycol hydraulic fluids	7
	2. Water based hydraulic fluids	9
	3. Water oil emulsions hydraulic fluids	11
	b) Synthetic hydraulic fluids	13
	1. Dibasic acid esters	15
	2. Silicate esters, Alkoxy siloxanes and Disiloxanes	17
	3. Silicones	21
	4. Silanes	22
	5. Synthetic hydrocarbons	23
	i) Alkylated aromatics	23
	ii) Polyalfa olefins	24
	6. Cvano compounds	26

	PAGE
7. Polyglycols and their derivatives	28
8. Borate esters	30
9. Chlorinated hydrocarbons	32
10.Polyamide esters	33
11. Phosphate esters	34
- Methods of preparation of phosphate esters	35
- Purification of phosphates esters	4 0
· Properties of phosphate esters	40
- Analysis of phosphate esters	43
i) Infrared spectral analysis	43
ii) Gas chromatographic analysis	44
- Application of phosphate esters	44
c) Oil synthetic blends	47
Hydraulic fluid additives	47
a) Anti-oxidant and PH control additives	48
b) Lubricity additives	48
c) Corrosion inhibitors	49
d) Anti foaming materials	49
e) Hydrolysis inhibitors	50
f) Special additives	50
PARRT II:	
Experimental	53
Preparation of triphosphate esters :	53
a) Raw materials	53
b) The apparatus	53
c)General method of preparation of trialkyl phosphat	e 56

1. Preparation of tributyphosphate without using	
catalyst and solvent	57
2. Preparation of tributylphosphate using AlCl $_{\rm 3}$ as	
catalyst with different concentrations [1,1.2	
and 1.5%] based on weight of alkanol	57
3. Preparation of tributylphosphate using benzene as	s
solvent	56
4. Preparation of tributylphosphate using toluene	
as solvent	58
5. Preparation of tributylphosphate using AlCl ₃ as	
catalyst and toluene as solvent	59
6. Preparation of tributylphosphate in the presence	
of toluene and triethylamine	59
7. Preparation of trihexylphosphate	60
8. Preparation of trioctylphosphate	61
9. Preparation of tridodecylphosphate	61
- Physico chemical characterization of prepared	
compounds	62
Elementary phosphorus analysis	62
* Mean molecular weight determination	62
Infra-red spectral analysis	62
▶ Gas liquid chromatographic analysis	62
→ Laboratory testing of the prepared esters as a base	
for hydraulic brake fluids	63
*Equilibrium reflux boiling point [Dry and Wet]	63

		PAGE
* R	efractive index	63
* T	otal acidity	64
* K	inematic viscosity [CSt]	64
* 5	pecific gravity	64
★ D	ensity	64
Pa	rt III:	
R	esults and Discussion	65
_	Preparation of triphosphate esters	65
_	Technique of the reaction	65
	l. Preparation of tributylphosphate without using	
	catalyst and solvent	66
:	2. Preparation of tributylphosphate using Alcl ₃ as	
	catalyst and toluene as solvent	66
:	3. Preparation of tributylphosphate in presence of	
1	toluene as solvent, triethylamine and without use	
(of catalyst	66
_	Characterization of prepared esters	68
	Mean molecular weight determination and elementary	
I	phosphorus analysis	68
	i)Infra-red spectral analysis of prepared compounds	68
1:	ii) Gas-liquid chromatographic analysis	77
	-Aspects on some chromatographic analytical data	77
	iv) Aspects on some physical properties of	

the prepared triphosphate esters.....

89

	v) Laboratory testing of the prepared phosphate	
	esters as base for hydraulic brake fluid	101
*	CONCLUSION	108
A	REFERENCES	110
ĸ	ARABIC SUMMARY	

* * *

<u>නවතතතතතත</u>

AIM OF THE WORK

නුමට පුවත්ව ප

Central Library - Ain Shams University

AIM OF

THE WORK

Many different types of materials are utilized as functional fluids and Functional fluids are used in many different types of applications. Thus, such fluids have been used as electronic coolants, diffusion pump fluids, lubricants, damping fluids, bases for greases, power transmission and hydraulic fluids, heat transfer fluids, heat pump fluids, refrigiration equipment fluids and filter medium for air-conditioning systems.

A particular important application of such functional fluids are their utilization as hydraulic fluids and engine lubricants in aircraft, requiring successful operation of such fluid over a wide temperature range. An especially valuable and highly desirable property of such fluids being fire resistance.

Phosphate esters have long been used as functional fluids(1). They have been used alone in wholly synthetic compositions as additives to mineral oil compositions to impart extreme pressure properties thereto. The volume of production of triarylphosphate as flame retardant plasticizers and fire resistant hydraulic fluids, is approximately 100 million pounds per years [MRI 1977](1) and now it seems to be more than the double.

The needs of the local market from the hydraulic brake fluids exceeds 300 imported tons per year. The Egyptian petroleum Research Institute (EPRI) has encouraged this work, which deals with hydraulic brake fluids. Therefore this research program covers a study of some functional fluids needed for the local market.

The aim of this study covers the following:

- Synthesis of some triphosphate esters .
- Study of some parameters which affect the esterification reactions for the aim of optimization.
- Characterization of the prepared compounds using the recent methods and different tools of analysis.
- Laboratory testing for the prepared esters to outline their suitability as base for hydraulic brake fluids in connection with some of the international standard specifications.