

AIN SHAMS UNIVERSITY

Faculty of Engineering

AN EFFECTIVE STRESS CONSTITUTIVE MODEL FOR SOFT CLAY

By GEORGE MAURICE ISKANDE

B.Sc. (Hon.) 1994

ATTS FOR THE DEC

A THESIS IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF SCIENCE IN CIVIL ENGINEERING

S M

Structural Engineering Department (Geotechnical Engineering) 63651

Under Supervision Of

Prof. Dr. Fathalla M. El-Nahhas

Prof. of Geotechnical Engineering Faculty of Engineering Ain Shams University

Dr. Eng. Mohammed M. Morsy

Assistant Prof. of Geotechnical Eng. Faculty of Engineering Ain Shams University

EXAMINERS COMMITTEE

Name, Title and Affiliation

Zagazig University

Signature

1- Prof. Dr. Mohsen Mashhour Ahmed
Prof. of Geotechnical Engineering
Faculty of Engineering

ru maskins

2- Prof. Dr. Fathalla M. El-Nahhas Prof. of Geotechnical Engineering Faculty of Engineering Ain Shams University EINL

3- Prof. Dr. Tarek Ahmed Mecky

Prof. of Geotechnical Engineering

Faculty of Engineering

Ain Shams University

Tavel A. Macly

Date 25/12 / 1997

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Ain Shams University, From April 1996 to August 1997.

No parts of this thesis has been submitted for a degree of a qualification at any other university or institution.

Date : 25/12/1997

Signature: Clarge Maurica

Name : George Maurice Iskander

ACKNOWLEDGMENTS

Before all, I do indeed thank my God who guided and aided me to bringforth to light this thesis within this period.

I wish to express my grateful thanks and gratitude to my supervisor Prof. Fathalla El-Nahhas, for encouraging me from the very beginning of this work and for his guidance and supportive advices and remarks all along this study. His direct supervision and continuous help have significant effects on the research.

To Dr. Mohammed Morsy, hurtful thanks are offered due to his great support and orientation during every stage of this work. His critical comments and our long discussions on numerical modelling aspects were invaluable for the accomplishment of this research. I would like to thank him too for his valuable time passed in revising this thesis.

I am greatly indebted to Dr. Ali Abdel Fattah for his encouragement and generous assistance. I am very grateful to Dr. Khaled Ali for his constant support and his valuable notes. I also wish to thank my college Eng. Sayed Mohammed for his brotherhood and his useful help.

Ain Shams University Faculty of Engineering

Department of Structural Engineering

Abstract of the M.Sc. Thesis submitted by:

George Maurice Iskander

Title of Thesis:

An Effective Stress Constitutive Model For Soft Clay

Supervisors: Prof. Dr. Fathalla M. EL-Nahhas.

Dr. Eng. Mohammed M. Morsy.

Registration date: 16/4/1996 Examination date: //1997

Abstract

Constitutive equations which model accurately the soil behaviour are essential if reliable numerical predictions of soil performance are to be achieved for practical geotechnical problems. One of these models is the Modified Cam-Clay model which is mainly used to simulate the behaviour of normally to lightly over-consolidated clay. The main aim of this research is to get better prediction for soft clay deformations using this comprehensive elasto-plastic idealization which is based on the critical state concept. This thesis includes a brief discussion of the basics of the model and its implementation into a finite element code. A new numerical scheme based on the pore pressure measurements is proposed to perform an effective stress analysis and to simulate the dissipation of pore water pressure with time. The new scheme is incorporated in a finite element code.

In order to check the validity of the model, to verify the numerical scheme and to test the results of the program, drained and consolidated undrained triaxial tests are simulated numerically. Finally, the program are utilized to simulate an actual geotechnical problem. An embankment case history from Alberta, Canada, is simulated and analyzed, the numerical results are compared with the field measurements and good agreement is achieved.

Keywords: Constitutive models, critical state concept, Modified Cam-Clay, effective stress analysis, pore water pressure. finite element analysis, field measurements, deformation and earth embankments.

CONTENTS

	Page
1. INTRODUCTION.	I
1.1 General.	1
1.2 Objectives of the Present Study.	2
1.3 Thesis Outline.	3
2. LITERATURE REVIEW.	4
2.1 Introduction.	4
2.2 The Effective Stress Principle.	5
2.2.1 Stress path.	5
2.2.2 Strain path.	6
2.2.3 Plane strain-stress path.	7
2.3 Modelling Soil Stress-Strain Behaviour.	7
2.3.1 Modelling in geotechnical engineering.	7
2.3.2 Models classifications.	8
2.3.3 The elastic models.	8
2.3.3.1 Linear elastic model.	8
2.3.3.2 The hyperbolic model.	10
2.4 Elasto-Plasticity in Geotechnical Engineering.	12
2.4.1 Introduction.	12
2.4.2 Ddeformation theory of plasticity.	12
2.4.3 Incremental theory of plasticity.	13
2.4.3.1 Bilinear model.	14
2.4.3.2 Multilinear model.	14
2.4.3.3 K-G model.	14
2.4.4 Basic concepts of the plasticity theories.	15
2.4.6.1.While Domestics	

		Page
	2.4.4.2 Hardening law.	15
	2.4.4.3 Elastic wall.	16
	2.4.4.4 Plastic potential function.	16
	2.4.4.5 Flow rule.	17
	2.4.4.6 Dilatancy.	18
	2.4.5 Two alternative yield functions.	19
	2.4.5.1 Tresca yield function.	19
	2.4.5.2 Von-Mises yield function.	19
	2.4.6 Elasto-plastic constitutive models.	20
	2.4.6.1 Drucker - Prager Constitutive model.	20
	2.4.6.2 Lade - Duncan work hardening model.	21
	2.4.6.3 The Modified Lade model.	23
	2.4.6.4 Cap plasticity models.	23
2.5	Soils Settlement.	25
	2.5.1 Introduction.	25
	2.5.2 Immediate or elastic settlement.	25
	2.5.3 Consolidation settlement.	26
	2.5.3.1 Terzaghi's one dimensional consolidation theory.	26
	2.5.3.2 Terzaghi's three dimensional consolidation theory.	28
	2.5.3.3 Biot's general three dimensional consolidation theory.	28
	2.5.3.4 Tan's three dimensional consolidation theory.	29
	2.5.4 Limitations of conventional analysis of consolidation	
	settlement.	31
	2.5.5 Requirements for better settlement estimates.	31
	2.5.6 Secondary compression [Creep].	31
2.6	The Critical State Concept.	32
	2.6.1 Introduction.	32
	2.6.2 Equilibrium states in loading and unloading.	33
	2.6.3 The critical state	3.4

I	Page
2.6.4 Family of yield curves.	36
2.6.5 The Roscoe surface.	37
2.6.6 The Hyorslev surface.	37
2.6.7 The stable state boundary surface.	37
2.6.8 The elastic walls.	38
2.7 The Cam-Clay Model.	39
2.7.1 Introduction.	39
2.7.2 Assumptions of the theory.	39
2.7.3 Derivation of the model.	40
2.7.4 Yielding of Cam-Clay surface.	41
2.7.5 Total strains in Modified Cam-Clay model.	42
2.7.6 Soil behaviour under Modified Cam-Clay model.	43
2.7.7 Overview of the Modified Cam-Clay model.	43
2.7.8 Continuum modelling applying the critical state concept.	44
2.7.9 Limitations of the critical state concept.	45
2.8 Summary.	45
INCORPORATION OF THE MODEL FOR EFFECTIVE STRESS	
ANALYSIS.	74
3.1 Introduction.	74
3.2 Finite Element Method in The Geotechnical Engineering.	75
3.3 New Approach for Effective Stress Analysis.	76
3.3.1 Analysis between the total and the effective stress approaches.	76
3.3.2 In-situ pore pressure estimation.	77
3.3.3 Incorporation of field pore water pressure measurements.	78
3.3.4 Applying the resulted distribution in effective stress analysis.	78
3.3.5 Incorporating the proposed scheme in the present study.	79
3.4 Finite Element Effective Stress Model.	80
3.5 Non-Linear Analysis Techniques.	84

3.

	Page
3.6 Implementation of The Model into a Finite Element Code.	85
3.6.1 Tangent stiffness method.	85
3.6.2 In-situ stresses.	86
3.6.3 Solution technique.	87
3.6.4 Construction loads and increment blocks.	87
3.6.5 The elastic shear response.	88
3.6.6 Simulating the consolidation process.	89
3.7 Evaluation of The Modified Cam-Clay Model Parameters.	89
3.7.1 The frictional constant M .	90
3.7.2 The slopes of the normal consolidation and swelling lines	
$(\lambda \text{ and } \kappa).$	90
3.7.3 The void ratio at unit pressure.	90
3.7.4 Other field data.	91
3.8 Preliminary Verification of AINSHAMS Program and of The New	
Scheme.	91
3.8.1 Drained triaxial test on Weald clay.	92
3.8.2 Consolidated undrained triaxial test on Grey Lacustrine clay.	93
3.9 Conclusions.	94
4. EMBANKMENT CASE HISTORY.	109
4.1 General.	109
4.2 Embankment Case History in Canada.	109
4.2.1 Introduction.	109
4.2.2 Subsurface conditions.	110
4.2.3 South approach fill performance.	Ш
4.2.4 Formulation of the numerical model.	Ш
4.2.5 Material modelling.	112
4.2.6 Incorporation of measured pore pressure in the effective stress	
analysis.	113

	Page
4.2.7 The analysis of the south embankment.	114
4.2.8 Discussion of the results.	114
4.3 Conclusions.	116
5. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS.	142
5.1 Summary.	142
5.2 Conclusions.	143
5.3 Recommendations.	144
REFERENCES	145
APPENDIX (A).	150
A.1 The Original Cam-Clay Theory.	150
A.2 The Modified Cam-clay Theory.	151
APPENDIX (B).	152
B.1 Behaviour of Normally Consolidated to Lightly Over-Consolidated	
Clay Under The Modified Cam-Clay Yield Surface.	152
B.2 Behaviour of Highly Over-Consolidated Clay Under The Modified	
Cam-Clay Yield Surface.	152
B.3 Calculation steps for strains at drained conditions.	153
APPENDIX (C).	157
Steps of The Proposed Interpolation Scheme for Finite Element	
Analysis.	157
APPENDIX (D).	160
D.1Case of Plastic Process on The Yield Surface.	160
D.2 Evaluation of Derivatives	161

	Page
APPENDIX (E).	162
E.1 The Main Facilities Taken from CRISP Program.	162
E.2 Main Modifications that were Introduced to Develop	
AINSHAMS Program.	163

LIST OF FIGURES

Figure	Page
2.1 Stress path in a three-dimensional effective stress space.	48
2.2 One-dimensional loading and unloading in $p - q$ effective stress path.	48
2.3 Linear elastic model.	49
2.4 Hyperbolic representation of stress-strain curve.	50
2.5 Uni-axial elasto-plastic behaviour.	51
2.6 Bilinear model.	52
2.7 Multilinear model.	52
2.8 K-G model.	53
2.9 The yield surface in the stress space.	53
2.10 Stress-strain curves for uni-axial compression.	54
2.11 Yielding and hardening.	55
2.12 Paths for loading and unloading.	56
2.13 Cross sections of the plastic potential and the yield surfaces	
shown in triaxial planes.	57
2.14 Flow rule and normality condition.	58
2.15 Isotropic hardening for stability conditions.	59
2.16 Mohr-Coulomb yield surface and associated flow rule.	59
2.17 Tresca and Von-Mises yield surfaces.	60
2.18 Failure surface of Drucker-Prager in principle stress space.	61
2.19 Yield and Failure surfaces of Lade-Duncan model.	62
2.20 Modified Lade yield surface shown in triaxial plane.	62
2.21 Cap plasticity model.	63
2.22 Typical sample deformation versus log of time for a given load	
increment.	64

	Page
2.23a Relation between v and p.	65
2.23b Relation between v and Ln p.	65
2.24 The critical state line and the family of λ -lines.	66
2.25 States of stresses and the critical state line in the p - q plane.	67
2.26 Yield curve in the critical state model.	67
2.27 The stable state boundary surface.	68
2.28 The yield curve.	69
2.29 The elastic wall.	70
2.30 Yield surface for Original Cam-Clay model.	71
2.31 Yield surface for Modified Cam-Clay model.	71
2.32 Yielding boundaries for Modified Cam-Clay.	72
2.33 Stress-strain response for drained conditions.	73
3.1 Methods of pore pressure evaluation.	97
3.2 Links between software for geotechnical design.	98
3.3 Location of piezometric measurements and integration points.	99
3.4 Schematic illustration of varying domain and boundary problem.	100
3.5 Diagramatic representation of equivalent load method.	101
3.6 Tangent stiffness method.	102
3.7 A jump in horizontal in-situ stresses is permissible in AINSHAMS	
program.	103
3.8 Plotting q versus p at failure from triaxial tests to get M .	104
3.9 Finite element mesh of the numerical analyses for the drained and	
the consolidated undrained tests.	105
3.10 Stress-strain behaviour of Weald clay.	106
3.11 Strain path for Weald clay.	107
3.12 Stress-strain path for Grey Lacustrine clay	108

	Page
4.1 General plan of the site.	118
4.2 Configuration of the south embankment.	119
4.3 Piezometric elevations during the embankment construction.	120
4.4 Construction stages and soil layers used in the numerical analysis.	121
4.5 Finite element mesh for Canada embankment.	122
4.6 Measured settlement.	123
4.7 Pore water pressure distribution under centreline of embankment	
at the end of stage (4).	124
4.8 Pore water pressure distribution 31m apart from the centreline of	
embankment at the end of stage (4).	125
4.9 Pore water pressure distribution 82m apart from the centreline of	
embankment at the end of stage (4).	126
4.10 Pore water pressure distribution under centreline of embankment	
at the end of stage (5).	127
4.11 Pore water pressure distribution 31m apart from the centreline	
of embankment at the end of stage (5).	128
4.12 Pore water pressure distribution 82m apart from the centreline	
of embankment at the end of stage (5).	129
4.13 Comparison between measured and computed settlement at (6B)	
for Grey Clay using $C_C = 0.33$.	130
4.14 Comparison between measured and computed settlement at (6C)	
for Brown Clay using $C_C = 0.33$.	131
4.15 Comparison between measured and computed settlement at (10B)	
for Grey Clay using $C_C = 0.33$.	132
4.16 Comparison between measured and computed settlement at (6A)	
for Till layer using $C_C = 0.33$.	133
4.17 Comparison between measured and computed settlement at (6B)	
for Grey Clay using $C_c = 0.154$	134