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SUMMARY 

It is supposed that wrc' have initially an INFINITE 

mass at rest of a VISCOUS fluid of finite electrical con-

ductivity in which a uniform field fio is prevailing. It 

is supposed then a dipole of moment M is suddenly introduced 

in the above configuration of the system, As a result of 

this sudden introduction a velocity ~ is produced in a 

certain volume of the fluid as well as a small disturbance 

h of Eo . The dipole, whose axis is always taken in the 

Z-direction, can be replaced by a small current loop in 

the (x,y)-plane, of strength I, radius a, with its centre 

always fixed at the origin of coordinates, and such that 

M = lim 11 a2 I 
a-o 

. . . 
I::: ~IO(p-a).H(t) 

... (1) 

... (2) 

where ~ is a unit vector in the direction of 0 increasing 

( p, 0, Z) are cylindrical polar coordinates,H(t) is the 

Heaviside unit function, and 5 is Dirac's delta function. 

Only the UNSYMMETRIC case, where the uniform field g
0 

is 

always taken parallel to the x-axis, perpendicular to the 

dipole axis, is dealt with. 
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In chapter I of this work boundary conditions on 

crossing the loop have been introduced in the basic equat­

tions used, namely Maxwell's equations and the hydrodynamic 

equations. 

In chapter II, mathematical solutions representing tb0 

behaviour of both U and h have been re-studied in tbG case -·-- -
where a MAGNEriC dipole bas beon suddenly introduced. 

Extensive figures calculated from the obtained mathematical 

results have been drawn. The behaviour of the phenomena 

has been traced at different long intervals of time. 

It is worth to note here that the figures so obtained, 

in the case of a VISCOUS fluid, show that the effoct of 

viscosity in the case of an infinite fluid, is of no great 
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importance. In fact, it is found that there is a great 

similarity between the beha7ion·c· of both Q and h in this 

case and those obtained by MO.fuciiDG* C-959) in a non­

viscous fluid. 

In chapter III the same problem bas been valued for 

a viscous fluid, but with the sudden introduction of an 

OSCILLATING dipole instead of a magnetic one. This case 

has been already published as a joint work in IL NUGVO 

CIMENTO (1969), Series X, Vol. ~B, pp. 1-11. It is seen 

that the solution of the problem of an oscillating dipole 

is much more diffi:Jult than that; of a magnetic one. A new 

tedious effort is needed to represent the obtained mathematical 

results in a form suitable for computation. 

It should be noted here that the problem in the 

SYMMETRIC oase where llo is taken parallel to the dipole 

axis is now under consideratiol1 by Mrs. BAGHDAD FAHMY and 

will be submitted in a future date. 



- J,l -

DIPOLE IN A VLSGGJS :FLUID 

§ l.l FUIIDAMENI:iiL k/.UJ.o.'IONS 

The phenomena can be describeJ by usiDg Maxwell's 

c-qua~J.ons and th0 hydrodynamic equat;ion. Mm .. 'Well' s equations 

in tbis case and in tbe presence of a mvving electrically 

conducting matter with velocity g and electrical conductivity 

a are : 

curl E = -1 JY () t ••• 

uur·:;. H = 4 J tl (I' " .... 

:nhere • • • 

-.:.i.l..SO :1i\.,. ll .. 0 • • • • ' • 

div J. = 0 • • • • • • 

• •• 

. .. 

• • • 

• •• 

••• 

(3) 

(4) 

('5) 

(7) 

(8) 

where ;§is the electric field, J the electric current and 

ff is the magnetic field. The effect of the disturbing 

source bas been expressed by in introducing the electro­

motive :force-" 0f tba current loop in equation (3). 

Making tb3 substitution 

••• • •• ( 9) 
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wbero •• 0 • • • • (10) 

di\" h = 0 ••• (11) 

••• • • • (12) 

where ~ is a unit vector in tbe direction of x. Taking 

tbe curl of equations (4) and (5), substituting in 

equation (3). applying conditions (7) and (8), wo see 

on neglecting squares and products of H and h, tbat 

"() 
(- -ot 

·rbe 

p 

1 v 2)h = lio grad U + 4 1t (] 

hydrodynamic equation 

2 
pY<r~ u 

is 

- -
47t curl 1 (13) 

••• (14) 

where the moving matter is considered to be incompressible, 

with density p, hydrostatic pressure p, and kinematic 

viscosity Y. 

Also the equation of continuity shows that 

div g :: 0 ••• • • • ••• (15) 

Tbe Pondermotive force acting on tbe loop is 

I= J "H - I - - - Ali • • • • •• . .. (16) 

Tbe effect of the disturbance is expressed by the 

force -11\. H to balance the Lorentz force on the loop, 

thus preventing its motion. 
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';nC: (~_6) i.r' -Jq_uation (14), w0 

Putting 

£?_ = - grad ~ ••• • I' ... 

••• 

• •• 

••• 

( l II\ 
.. t' J 

(18) 

(19) 

taking the divergence of equation (l?) and using conditions 

(11) and (15), we find that 

div ;e = 0 • • • ••• (20) 

It is follnd more conv9:1i0nt to express equations 

(13) and (17) in non-dimensional units. This cc.m be dono 

h = H h 1 

' !L ::: V'g_' ' 
p = CloV'g,' • t' = (j) t, 

< - o- 0 (21) 
f. = m r'/V I 

y ::: ynt2 / (J)o t ) 
o-

where V is the .A.lfven velocity defined by 

••• • • • • •• (22) 

end 11)0 is IJ. frequency defined by 

(J)o = (J H2' 
o' P· ••• • •• (23) 

Hence forth tbe p~imes will be omitted. 
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The fundamental equations (13) and (17) can now be expressed 

in the follow:ing non-d:i;:8ns:.Conal. +'c rm~ 

••• 

where 

!:. "'-grad ~ [P + 811t (l'lC + ]2)2] ••• 

Introducio.g the solenoidal vectors t.y, 'X- and 2 
that 

h :: curl \!{ , U "' curl')(,. 

(24) 

(26) 

such 

(27) 

we seo that equations (24) and (25) respectively can be 

put in the form 

~ '\72)'b( ;: ~X.. + 1 (28) ( 0 t - ••• . .. 
- ~X 

cl- Ytl)')("' 0~ 
()t - ox + ~ •• • • • • (29) 

where 

curl .£l = 1x " ~ + E. ••• • • • • •• (30) 

which implies that 

... . .. (31) 
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§ 1. 2 Ilfl'EGRAL TRll.NSFORMS USED 

l. The Heaviside trnnsform denoted by broken brackets 

around tbe transformed symbol. It is defined by 

(:D ~ 
<¥(f., p) := p ~ 0-p'G lV(f.,t)dt ••• 

0 

Integrating by parts shows that 

~here 

(r,o) , ~1 := ( () 'ui ) 
C) t t=o 

(32) 

'Yo and ~ 1 will be neglected in our results, since 

initially the field is uniform and the fluid is at rest. 

2. The double Fourier transform denoted by a super­

script star, thus: 

~*(f,m,z,t)= 

••• 0.3 ) 

the solution to wbich is 

'\t1(x,y,z,t) = 
4

\ 2 r[co \l*(.(,m,z,t)exp( -i(fx+my)]d:Zdm 

••• (34) 

3. The FoQ~ier transform denoted by a superscript 

dagger, thus: 
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'1.4'\x,y,o,t) :::; Joo '\!((x,y,:z;,t) einz dz (35) 
-oo 

tbe solution to wbicb is 

'-Y (x,y,z,t) == 2~· _Joo "./' ) -in:z; 
(x~y,n,t e dn (36) 

§ 1.3 TO DEFINE I* 

Let ~ and Iy be the x and y components of I as 

defiood in tbe summary by 

then 

Let 

then 

l = l¢ I 5(p- a).H(t) ; 

Ix ::: - J sin Ill 

~ 

f = s cos a. ' 

I = I cos 0 y -

m ::: ) sin a 

••• . .. 
and f x + my = p ~cos(0 - a.) 

also 

I* ·I* · r* l·r* = -l Sln a., = cos a. 
X - y 

It then follows that 

••• 

• •• 

••• 

~ = i I~ sih a - i I; cos a. 

(37) 

(38) 

• •• C39) 

Applying equation (33) to equations (37) and substituting 

the obtained values for I~ and I; in equation (38), we have 

I* ::: -i S ~ I cos(!~-a.)6( p -a)ei(fx-Hny) dxdy -oo 
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whero J1(z) denotes the Bessel function of the first kind 

of order unity. Making the substHution 

M = lim 'It a2 I • a--;-o 

we have 

I* 
.. ~ 

= ).M • ••• • •• • • • (40) 

Then equations (3?) show that 

I* =- imM , r* = i [M ••• • • • (41) 
X y 

§ 1.4 PROCEDURE FOR OBTAINING A FORMAL SOLUTION 

Applying the Heaviside transform as given in equation 

(32), th~ star and dogger Fourier transforms as shown in 

relations (33) a~d (35) respectively, equations (28) and 

(29) show respectively that 

2 2 *~~ ~ * (p +) + u ) <y_· 7 = -if < ~ > + 1¢ I (42) 

(p+ y ~2+ )'n2)<>_!·!· >=-if<)!~)+ <B*~) (43) 

where 

* I l,z ' ••••• (44) 

so that 

* if <-B >:::: -2 -c ••• (45) 
) 
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Making use of result ( 44), solving equations ( 42) and 

(43) simultaneously, we have 

< *t > -!* i g p l (47) 
X - ( S2+n2)[p2+P!J. ( ~/+n2)+Y\ ~2+n2)+ t2) ¢ 

wbere ~ ::: l + Y • • • • • • •.. • • • (48) 

It is to be noticed that 

' x*t :;:: a z 


