AIN SHAMS UNIVERSITY FACUITY OF ENGINEERING

INFLUENCE OF VARIOUS DESIGN PARAMETERS ON
THE PERFORMANCE OF MECHANICAL GOVERNORS
IN DIESEL ENGINES

ВΥ

1.1+36

ENG MOHAMED EL SAYED GOMAA SAMRAH

" A Thesis submitted in partial fulfilment of the requirements of the degree of master of science in mechanical engineering"

Supervised by

professor Dr. A. H. Bawady professor Dr. F. A. Tolbah

Dr . Abdul Aziz Morgan

Cairo - 1990

EXAMINERS COMMITTEE

The undersigned certify that they have read and recommend to the faculty of Engineering, Ain Shams University for acceptance a thesis entitled "INFLUENCE OF VARIOUS DESIGN PARAMETERS ON THE PERFORMANCE OF MECHANICAL GOVERNORS IN DIESEL ENGINES", submitted by ENG. MOHAMED EL SAYED GOMAA SAMRAH, in partial fulfilment of the requirements for the degree of Master of Science in Mechanical Engineering.

- 1- Professor Dr. ABDUL FATTAH IBRAHIM ABDUL FATTAH
 Professor of Mechanical Engineering
 Faculty of Engineering , Alexandria University.
- 2- Professor Dr. SAMIR MOHAMED ABDUL GHANY

 Professor of Mechanical Engineering

 Faculty of Engineering , Ain Shams University.
- 3- Professor Dr. AHMED HASSAN BAWADY
 Professor of Mechanical Engineering .

 Faculty of Engineering , Ain Shams University.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Mechanical Engineering.

The work included in this thesis was carried out by the author in the the Department of Energy and Automotive Engineering, Ain Shams University, From November 1985 to Novmeber 1990.

No part of this thesis has been submitted for a degree qualification at any other University or Institution .

Date :

Signature: M. Jomaa

Name : MOHAMED EL SAYED GOMAA

TO MY PARENTS WHO GAVE AND ARE STILL GIVING
WITHOUT ASKING ANY THING IN RETURN

ABSTRACT

Both static and dynamic behaviour of different mechanical speed governors, as well as, the overall engine-governor system have been investigated. The study shows the effect of various design parameters of the governors on the performance of diesel engine control systems and provides the necessary guide to make the effective compromises so that the governor can be properly designed and selected for a certain engine under a particular application. Computer programs based on the mathematical formulations of the behaviour of different system components were constructed and used to predict the steady-state and transient behaviour of different engine control systems. Simulations of different diesel engines with a certain governor, as well as, simulations of different mechanical governors with a certain diesel engine were made.

Both experimental and theoretical results confirm that the governor characteristics can be altered in several ways to meet a certain opertional requirement; either by changing the governor weights or by changing the governor springs.

To achieve the optimum performance from a diesel engine control system , the governor parameters must be changed , as

determined from the condition of obtaining the minimum value of an integral performance criteria of the engine control system. To get the optimum performance, governor delay time, viscous friction time, Coulomb friction and degree of irregularity of the governor must be reduced as mentioned in this study. A reduction in degree of irregularity of the governor suppresses the momentary speed rise, but not enough droop may cause instability in a governor operation. Too much droop can result in slow governor response. In case of, PI governor, a reduction in servo time constant and PI element time constant would improve the transient performance of diesel engine control systems.

At low engine time constant, the transient performance is improved, but the speed governing characteristic is in a worse operating conditions.

This study shows, for example, that an improvement of about 10.6% or 10% in the momentary speed rise can be achieved by either reducing the governor delay time or the servo time constant by 25% provided that all optimum parameters are implemented.

ACKNOWLEDGEMENTS

Countless thanks to Allah for his permanent guidance and support specially during this work .

The author would like to take this opportunity to express his thanks to all those who have given help and advice during this work .

He would like to thank Professors A.H. Bawady, F.A. Tolbah and Dr. Abdul Aziz Morgan for their helpful advice and encouragement. The author wishes also to express his sincere thanks to the team of work of the Regwa company for their encourgament.

CONTENTS

Table of contents

Abstract	i
Acknowledgement	111
Table of contents	iv
Nomenclature	ix
CHAPTER 1 : Introduction	1
1.1 Review of the previous work	2
1.2 Problem formulation	6,
1.3 Present work	7
1.3.1 Theoretical work	7
1.3.2 Experimental work	8
CHAPTER 2 : Digital simulations of automatic control system	
of the diesel engines	10
2.1 Introduction	10
2.2 Diesel engine control systems modelling	12
2.2.1 Engine control system with a mechanical governor	
provided with dash-pot unit	12
2.2.2 Engine control system with a mechanical governor	
without dash-pot unit	17
2.2.3 Engine control system with a proportional plus	
integral governor	18

2.3	Simulation of a $64 105/130$ diesel engine with	
	a R-11M precision governor	20
2.3.1	64 105/130 diesel engine specification	21
2.3.2	R-11M governor specification	21
2.4	Simulation of a 12 4 180/200 diesel engine with	
	a R-23 governor	22
2.4.1	12 y 180/200 diesel engine specification	23
2.4.2	R-23 governor specification	23
2.5	Simulation of behaviour of different diesel engines	
	with a certain governor	24
2.5.1	Different diesel engines with the R-11M governor	24
2.5.2	Different diesel engines with the R-23 governor	25
2.6	Simulation of behaviour of different governors with	
	a certain diesel engine	26
2.7	Coulomb friction in governor mechanism	26
2.8	Optimum governor variables and performance criteria	29
СНАРТЕ	R 3 : Experimental work	60
3.1	Aim of the experimental work	60
3.2	Test rig	60
3.2.1	Mechanical governor and injection system	61
3.2.2	Linear variable differential transformer transducer	63
3.2.3	A.C. tachogenerator	64

3.2.4 Electric ciricuits 65	5
3.2.5 Experimental procedure 65	5
CHAPTER 4 : Results and discussion 76	5
4.1 Theoretical results 76	5
4.1.1 Sample of different governors calculations 7	7
4.1.2 Effect of various design parameters on the govenor	
variables 78	8
4.1.2.1 The effect of specific weight of the governor	
material 7	8
4.1.2.2 The effect of mechanical transmission ratio 79	9
4.1.2.3 Effect of some of the governor springs parameters 8	1
4.1.2.3.1 The effect of governor spring material 8	1
4.1.2.3.2 The effect of spring index 8	4
4.1.2.4 The effect of mass of both the governor sleeve	
and the fuel rack 8	5
4.1.2.5 The effect of oil working pressure 8	5
4.1.2.6 The effect of control port diameter 8	7
4.1.3 Effect of governor variables on the performance	
of diesel engine control system 8	8
4.1.3.1 The effect of governor time constant 8	8
4.1.3.2 The effect of viscous friction time 8	9
4.1.3.3 The effect of dash-pot time constant 9	, 0

4.1.3.4 The effect of degree of irregularity	91
4.1.3.5 The effect of servo time constant	92
4.1.3.6 The effect of PI-element time constant	93
4.1.4 The effect of Coulomb friction on the governor	
response	94
4.1.5 Behaviour of different diesel engines with	
a certain mechanical governor	95
4.1.5.1 Case I	95
4.1.5.2 Case II	96 .
4.1.6 Behaviour of different governors with	
a certain diesel engine	97
4.1.6.1 Case I	97
4.1.6.2 Case II	98
4.2 Experimental results	98
4.2.1 Case I	98
4.2.2 Case II	100
4.3 Comparison between experimental and	
theoretical results	100
CHAPTER 5 : Conclusion and Suggestions for further work	147
5.1 Conclusion	147
5.2 Suggestions for further work	151
Appendix I : Governor terminologies	

Appendix II : Histricical review of the speed governig

system

Appendix III : Types of governors

Appendix IV : Engine differential equation

Appendix V : Determination of the total energy of the

governor sensing element

Appendix VI : Dynamic equilibrium of the PI-element