

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

13:4

1.401101

EFFECT OF EXCITATION CONTROL ON IMPROVING THE SUBSYNCHRONOUS

RESONANCE STABILITY BOUNDARIES

BY

EHAB FAHMY EL-SADANY

621.380432

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS OF THE DEGREE OF MASTER OF
SCIENCE IN ELECTRICAL ENGINEERING

33649

SUPERVISED BY

Prof. Dr. A.K. Al-Kharashi

Prof. Dr. M.A. Badr

DEPT. OF ELECT. POWER & MACHINES

FACULTY OF ENGINEERING

AIN SHAMS UNIVERSITY

CAIRO - 1990

EXAMINERS COMMITTEE

NAME , TITLE & AFFILIATION

SI GNATURE

1- Prof. Dr. Moataz Z. Ghoneim Professor, Dept. of Elect. Power & Machines Dean of Faculty of Engineering Al-Azhar University

2- Prof. Dr. Metwaly A. El-Sharkawy Professor, Dept. of Elect. Power & Machines Faculty of Engineering , Ain Shams University

3- Prof. Dr. Ali K. Al-Kharashi Professor , Dept. of Elect. Power & Machines Faculty of Engineering, Ain Shams University

4- Prof. Dr. Mohamed A. Badr Professor, Dept. of Elect. Power & Machines Faculty of Engineering , Ain Shams University Rurashi. M. Bade

STATEMENT

This dissertation is submitted to ${\tt Ain}$ Shams University for the degree of Master in Electrical Engineering .

The work included in this thesis was carried out by the author in the Department of Electrical Power and Machines , λ in Shams University , from October 1986 to June 1990 .

No part of this thesis has been submitted for a degree $\,$ or a qualification at other University or institution .

Date

Signature

Name : EHAB FAHMY EL-SADANY

ACKNOWLEDGEMENT

The author would like to thank Prof. Dr. A. K. Al-Kharashi so much for all he has done for him. His encouragement and fruitful remarks will always guide him in his future life.

The author has the honour to dedicate this modest thesis to Prof. Dr. M. A. Badr , thanking him for all the efforts he has exerted so that it could be finished .

The author can hardly find the words to express his thankfulness, appreciation and gratitude for all the help and the useful guidance Dr. Badr offered him during his supervision. He will be always indebted to him and will never forget his care.

I am particularly grateful to my parents and my brother for their unwavering support and encouragement .

AIN SHAMS UNIVERSITY

"EFFECT OF EXCITATION CONTROL ON IMPROVING THE SUBSYNCHRONOUS

RESONANCE STABILITY BOUNDARIES "

Student:E. F. El-Sadany

Supervisors:

Prof. Dr. A. K. Al-Kharashi

Prof. Dr. M. A. Badr

ABSTRACT

The subsynchronous resonance (S.S.R) phenomenon in series compensated power systems has been the focus of considerable interest over the last two decades. This phenomenon refers to the excessive shaft torque pulsations resulting from an interaction between the electromagnetic and the electromechanical system oscillations at specific frequencies.

In this thesis, the physical nature of the S.S.R phenomenon, the factors affecting its presence as well as the available methods of its handling are discussed. A supplementary excitation controller using properly chosen signals is proposed as a possible method for avoiding the serious consequences of this phenomenon.

For this purpose, the mathematical models and the corresponding digital computer simulations needed for performing the aimed at investigations are developed. These are based on a linearized version of the system equations. In addition, analytical investigations are carried out in order to realize the limitations imposed on the different techniques of supplementary excitation control.

TABLE OF CONTENTS

			Page
Acknowledge	ment	••••••••••••	iv
Abstract		•••••	v
Table of Co	ntents	•••••	vi
List of Fig	ures	•••••	x
List of Tab	les	•••••	xiii
List of Sym	bols	•••••	xiv
Chapter 1:	INTROD	UCTION	
	1.1	General	1
	1.2	Thesis objectives and layout	2
Chapter 2:	THE SU	BSYNCHRONOUS RESONANCE PROBLEM	
	2.1	General	5
	2.2	Physical Nature of the Problem	5
	2.2.1	Introduction	5
	2.2.2	The Electromagnetic Aspect	6
		a) The Uncompensated Case	6
		b) The Compensated Case	12
	2.2.3	The Electromechanical Aspect	15
	2.2.4	Torsional Dynamics	17
	2.3	The Subsynchronous Resonance Phenomenon	
		(S.S.R)	17

		Roundary	20
	4.3	Electrical Self Excitation Stability	
	4.2	Dynamic Stability Analysis Technique	38
	4.1	Introduction	38
Chapter 4:	s.s.R.	DYNAMIC STABILITY BOUNDARIES	
	3.10	The Overall Linearized State Space Model .	36
	3.9	Supplementary Control Signals	35
	3.8	Excitation Control System Representation .	34
		Equation	
	3.7	Linearized Electromagnetic Torque	
	3.6.2	Turbogenerator Shaft Assembly	31
	3.6.1	• • • • • • • • • • • • • • • • • • •	
	3.6	Torsional Dynamics	
		Electromagnetic Phenomenon	
	3.5	The Linearized State Space Model of the	
	3.4	Analysis of Transmission System	25
	3.3.3	Torque Equations	25
	3.3.2	Voltage Equations	24
	3.3.1	Flux Linkage Equations	24
	3.3	Synchronous Machine Representation	23
	3.2	System Under Study	23
	3.1	General	23
Chapter 3:	MATHE	AATICAL MODELING	
		b) Bypass Damping Filter	
		a) Static Blocking Filter	18

	4.4	Evaluation of Torsional Modes	41
	4.5	The S.S.R Dynamic Stability Boundaries	42
	4.5.1	The Unregulated System	42
	4.5.2	The Regulated System	51
	4.6	Transient Response Analysis	51
	4.6.1	The Unregulated System	51
	4.6.2	The Regulated System	54
Chapter 5:	BPPBCT	OF SUPPLEMENTARY EXCITATION CONTROL	
	5.1	Introduction	62
	5.2	Mathematical Approach	63
	5.3	Conventional Supplementary Excitation	
		Controllers	65
	5.3.1	Controllers Utilizing a Speed Signal	65
	5.3.2	Controllers Utilizing Speed plus	
		Power Signal	66
	5.4	Proposed Supplementary Excitation	
		Controller (S.E.C)	68
	5.5	Analysis of the Role Played by the prop-	
		osed supplementary excitation controller .	70
	5.6	Dynamic Stability Boundaries	72
	5.7	Transient Response Analysis	73
Chapter 6:	CONCLU	SIONS	
	6.1	Achievements	78
	6.2	Conclusions	79
	6.3	Recommendations	8 N

	4.4	Evaluation of Torsional Modes 4	1
	4.5	The S.S.R Dynamic Stability Boundaries 4	2
	4.5.1	The Unregulated System 4	2
	4.5.2	The Regulated System5	1
	4.6	Transient Response Analysis 5	1
	4.6.1	The Unregulated System 5	1
	4.6.2	The Regulated System 5	4
Chapter 5:	EFFECT	OF SUPPLEMENTARY EXCITATION CONTROL	
	5.1	Introduction 6	2
	5.2	Mathematical Approach 6	3
	5.3	Conventional Supplementary Excitation	
		Controllers 6	5
	5.3.1	Controllers Utilizing a Speed Signal 6	;5
	5.3.2	Controllers Utilizing Speed plus	
		Power Signal 6	56
	5.4	Proposed Supplementary Excitation	
		Controller (S.E.C)6	8
	5.5	Analysis of the Role Played by the prop-	
		osed supplementary excitation controller . 7	70
	5.6	Dynamic Stability Boundaries	12
	5.7	Transient Response Analysis	13
Chapter 6:	CONCLU	SIONS	
	6.1	Achievements	7 8
	6.2	Conclusions	79
	6.3	Recommendations	80

REFERENCES	••••••••••••••••••••••••••••••••••••••	82	
APPENDICES	_		
	Appendix	A - Data of the System Under Study 88	
	Appendix	B - State Space Model of the System	
		Under Study 90	
	A ppendix	C - Elements of the Overall	
		Characteristic Matrix 92	
	Appendix	D - Block Diagram Constants 96	
	Appendix	E - Dynamic Stability Program Listing . 97	
	Appendix	F - Transient Response Program Listing 101	L

LIST OF FIGURES

Figure	e ~	Page
	M.M.F's produced by the synchronous machine	
2.1		
	windings under balanced fault conditions	•
	(No series capacitors)	8
2.2	M.M.F's produced by the synchronous machine	
	windings under unbalanced fault conditions	
	(No series capacitors)	11
2.3	M.M.F's produced by the synchronous machine	
	windings under unbalanced fault conditions	
	(Series capacitors are included)	13
2.4	The static blocking filter	
2.5	The bypass damping filter	
3.1	System under study	
3.2	The Hydrogenerator assembly	
3.3	The Turbogenerator assembly	
3.4	Block diagram of the excitation control system	34
3.5	Block diagram of the supplementary control Signals .	35
4.1	Dynamic stability boundaries for the Hydro system	
	showing the effect of electrical self excitation	
	(no damper winding)	40
4.2	Dynamic stability boundaries of the Hydro system	
	showing the effect of torsional dynamics inclusion .	43
4.3	and the Musha cyctam	
	showing the effect of torsional dynamics inclusion .	47

4.4	Effect of generator self damping on improving
	the dynamic stability boundaries (Hydro-system) 48
4.5	Effect of the turbine self damping on improving the
	dynamic stability boundaries (Hydro-system) 49
4.6	Effect of the shaft stiffness on improving the
	dynamic stability boundaries (Hydro-system) 50
4.7	Effect of voltage regulators on improving the
	dynamic stability boundaries (Hydro-system) 52
4.8	The generator speed deviation without torsional
	dynamics included (Hydro-system);
	$X_c = 0.9 \text{ pu}$, $R_e = 0.05 \text{ pu}$
4.9	The generator speed deviation with torsional
	dynamics included (Hydro-system);
	$X_c = 0.9 \text{ pu}$, $R_e = 0.05 \text{ pu}$
4.10	
	voltage regulator effect (Hydro-system);
	$X_c = 0.9 \text{ pu}$, $R_e = 0.05 \text{ pu}$
4.11	Relative deviation of angles $(\delta_g - \delta_i)$ with
	voltage regulator effect included (Hydro-system);
	$X_c = 0.9 \text{ pu}$, $R_e = 0.05 \text{ pu}$
4.12	The generator speed deviation with voltage regulator
	effect included (Hydro-system);
	$\chi_{c} = 0.9 \text{ pu}$, $R_{e} = 0.05 \text{ pu}$
4.13	The generator speed deviation without torsional
	dynamics included (Turbo-system);
	$X = 0.7 \text{ pu}$, $R_{p} = 0.05 \text{ pu}$

4.14	The generator speed deviation with torsional	
	dynamics included (Turbo-system);	
	X _c = 0.7 pu , R _e = 0.05 pu	59
4.15	Relative deviation of angles $(\delta_q - \delta_q)$ without	
	voltage regulator effect (Turbo-system);	
	X _c = 0.7 pu , R _e = 0.05 pu	60
4.16	Relative deviation of angles $(\delta_g - \delta_h)$ with	
	voltage regulator effect included (Turbo-system);	
	X _c = 0.7 pu , R _e = 0.05 pu	60
4.17	The generator speed deviation with voltage regulator	
	effect included (Turbo-system);	
	X _c = 0.7 pu , R _e = 0.05 pu	61
5.1	Block diagram representation of a synchronous	
	machine connected to a large power system	64
5.2	Block diagram of a speed signal supplementary	
	controller	66
5.3	Block diagram of speed plus power stabilizing	
	signal	67
5.4	Proportional plus derivative supplementary	
	power signal block diagram	69
5.5	Effect of proposed supplementary Excitation	
	Controller on the dynamic stability boundaries	
	of the Hydro system	75
5.6	Effect of proposed supplementary excitation	
	controlier on the dynamic stability boundaries	
	of the Turbo system	75
5.7	The generator speed deviation with the	
	proposed SEC included (Hydro-system)	76

5.8	Relative deviation of angles $(\delta_g - \delta_i)$ with the	
	proposed SEC included (Hydro-system)	76
5.9	The generator speed deviation with the	
	proposed SEC included (Turbo-system)	77
5.10	Relative deviation of angles $(\delta_g - \delta_A)$ with the	
	proposed SEC included (Turbo-system)	77