Pattern of Aortic Stiffness in Young Egyptian Adults with Coronary Artery Disease

Thesis
Submitted for Partial Fulfillment of MD Degree in Cardiovascular
Medicine.

By Mohamed Khaled Ali Hassan, MSc

Supervisors

Prof. Mohammed Mahmoud Abd Elghany, MD

Professor of Cardiovascular Medicine, Cairo University.

Prof. Essam Baligh Eweis, MD

Professor of Cardiovascular Medicine, Cairo University.

Prof. Mohammed Osama Taha, MD

Consultant of Cardiovascular Medicine, National Heart Institute

Dr. Assem Abd El- Aziz Fahmy ,MD

Lecturer of Cardiovascular Medicine, Cairo University.

Cairo University 2015

Acknowledgments

FIRST OF ALL, THANKS TO ALLAH

I would like to express my deep gratitude, appreciation and sincere thanks to **Dr. Mohammed Abd Elghany, Professor of Cardiology, Cairo University,** for the idea of this work, his continuous support, meticulous supervision, great valuable remarks, encouragement and assistance until this work was fulfilled.

I would like to express my special deep gratitude, appreciation and sincere thanks to **Dr. Essam Baligh Eweis, Professor of Cardiology, Cairo University,** for his patience, technical assistance regarding practical issues of the work, meticulous supervision, and assistance until this work was fulfilled.

I would like to express my deep gratitude, appreciation and sincere thanks to **Dr. Mohamed Osama Taha, Head of Echocardiography Labs, National Heart Institiue,** for his continuous support and guidance, encouragement and assistance until this work was fulfilled.

I would like to thank **Dr. Assem Abd El- Aziz Fahmy, Lecturer of Cardiology, Cairo University,** for training me and hand by hand work throughout the practical part of the study and thesis writing. I have learnt much of him and I am very grateful for his motivation, time and great effort.

I would like to thank **Dr. Dina Osama**, Lecturer of cardiology, Cairo University for helping me with the study design and practical part of the thesis.

I would like to thank **Dr. Eman Hassan**, Consultant of radiology, National Heart Institute for her continuous support and guidance in performing the practical part of the work. I am deeply indebted to her efforts.

Finally, I would like to dedicate this work to **my parents**, **my wife** and all **my family** members. Without their support, I would have never achieved any success in my life.

List of Contents

Title Page No.		
List of Tablesi		
List of Figures		
List of Abbreviationsi		
Introduction		
Aim of the Work		
Review of Literature		
• Atherosclerosis		
Coronary Artery Disease in Young Age		
Arterial Stiffness		
■ Endothelial Dysfunction		
■ Duplex Ultrasound for Arterial Imaging		
Subjects and Methods		
Results		
Discussion		
Limitations		
Conclusion		
Recommendations		
Summary		
References		
Arabic Summary		

List of Tables

Table No.	Title	Page No.	
Table (1):	Comparing demographic dat		82
Table (2):	Comparing risk factors in your	g and old CAD patients	82
Table (3):	Comparing duplex ultrasound patients and controls		83
Table (4):	PWV measurements of CAD pa	tients and controls	86
Table (5):	Aortic stiffness measurement controls	-	86
Table (6):	Brachial FMD measurement controls	-	88
Table (7):	Comparing results of young controls		90
Table (8):	Comparing results of old CAD	patients and controls	92
Table (9):	PWV of normotensive young controls		94
Table (10):	PWV of normotensive old CAD	patients and oldcontrols	95
Table (11):	Comparing results of young an	d old CAD patients	96
Table (12):	Comparing angiographic resul patients	•	98
Table (13):	Comparing results of young an	d old controls	100
Table (14):	PWV cut off point between old	CAD and old controls	102
Table (15):	PWV cut off point between controls		103
Table (16):	Correlation between PWV and	CARFEM index	104
Table (17):	Relation between number of di	ŕ	105

List of Figures

Fig. No.	Title Page	No.
E: (1):		
Figure (1): Figure (2):	Vascular Endothelial cell	
Figure (2):	Schematic evolution of atherosclerotic plaque	
Figure (4):	Layers of a normal artery	
Figure (5):	Mechanisms of arterial stiffness	
Figure (6):	Physiologic Properties of the Aorta as a Reservoir and	
rigure (0).	Conductive System: The Windkessel Principle	39
Figure (7):	Insults Leading to Structural Changes in the Aorta	
rigure (1)	and its Functioning.	
Figure (8):	Time measurement in femoral artery gatting with	
119410 (0)	ECG.	
Figure (9):	Noninvasive Determination of PWV Between the	
8 (0)	Carotid Artery and the Terminal Aorta	41
Figure (10):	Measurements of aortic diameters are shown on the	
	M-mode tracing obtained at a level 3 cm above the	
	aortic cusps	46
Figure (11):	Brachial FMD measurement	54
Figure (12):	Dopplereffect	63
Figure (13):	Doppler effect and equation	63
Figure (14):	Continuous wave system (A) and pulsed Doppler	
	system (B)	64
Figure (15):	Extracranial cerebrovascular anatomy showing major	
	arterial pathways to the brain	66
Figure (16):	Common carotid IMT as shown by B-mode	
	ultrasonography	
Figure (17):	The CARFEM Index increases in all groups with age	
T' (10)	and with the severity of coronary atherosclerosis	71
Figure (18):	Time measurement in femoral artery gatting with	7.0
Figure (10):	ECG.	
Figure (19): Figure (20):	Aortic stiffness by echocardiography	
Figure (21):	Brachial FMD measurement	11
rigure (21).	patients and controls.	84
Figure (22):	Right common carotid artery in a young patient	
Figure (23):	Right common carotid IMT in a young patient	
Figure (24):	Right SFA posterior wall thickness in a young control	
Figure (25):	Right SFA posterior wall thickness in an old patient	
Figure (26):	ECG gating for measuring carotid-femoral PWV	
Figure (27):	ECG gating for measuring carotid-femoral PWV	
Figure (28):	Comparing PWV, aortic stiffness and FMD of CAD	·· - •
G , ,	patients and controls.	88
Figure (29):	Brachial Flow mediated dilation	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (30):	Brachial Flow mediated dilation	89
Figure (31):	Comparing duplex ultrasound results of young CA	D
	patients and young controls.	91
Figure (32):	Comparing PWV, aortic stiffness and FMD of your	ng
	CAD patients and controls.	91
Figure (33):	Comparing duplex ultrasound results of old CA	
	patients and controls.	
Figure (34):	Comparing PWV, aortic stiffness and FMD of old CA	D
	patients and controls.	
Figure (35):	PWV of normotensive young CAD patients and your	_
	controls	
Figure (36):	PWV of normotensive old CAD patients and o	
, ,	controls	
Figure (37):	Wall thickness and CARFEM index of young and o	
	CAD patients.	
Figure (38):	Comparing PWV, aortic stiffness and FMD of your	0
	and old CAD patients.	
Figure (39):	Coronary angiography results of old CAD patients	
Figure (40):	Coronary angiography results of young CAD patients	
Figure (41):	Wall thickness and CARFEM index of young and o	
	controls	
Figure (42):	Comparing PWV, aortic stiffness and FMD of your	
T! (10):	and old controls.	
Figure (43):	Roc curve of PWV cut off point between old CAD ar	
T' (44).	old controls.	
Figure (44):	Roc curve of PWV cut off point between young CA	
Ti: (45).	and young controls.	
Figure (45):	Correlation between PWV and CARFEM index	
Figure (46):	Relation between number of diseased vessels ar	
Times (47).	PWVRelation between number of diseased vessels ar	
Figure (47):		
Figure (49):	CARFEM index Normal population reference values of aortic PWV	
Figure (48):	Normal population reference values of aortic PWV	110

List of Abbreviations

Abb.	Full Term
2D	
	.· 1 wo dimensional .∶ Asymptomatic Carotid Artery Progression Study
	* *
	: Angiotensin converting enzyme inhibitors
	: Acute coronary syndrome
	: Aortic distensibility
	: Plasma asymmetric dimethylarginine
	: Advanced glycation end products
	: Aortic intima media thickness.
	: Aortic pulse wave velocity
AS	
	: Aortic stiffness index
BMI	
BMI	
	Coronary Angiography.
	: Coronary artery bypass graft
	.: Coronary artery disease
	: Carotid Atherosclerosis Italian Ultrasound Study
	: Common carotid artery.
	.: Celiprolol Intima-Media Enalapril Efficacy Study
	: Common femoral artery.
	: Carotid-femoral pulse wave velocity
	: Carotid intima-media thickness
	: Computed tomography.
	.: Cerebrovascular accidents.
	: Cardiovascular disease
CW	.: Continuous wave Doppler
	: Disability-adjusted life years
	: Diastolic blood pressure
DD	
DM	∴ Diabetes Mellitus.
ECM	.: The extracellular matrix
ECs	: Endothelial Cells
	.: Endothelial nitric oxide synthase
	Endothelial progenitor cells
	: European Society of Cardiology
FBN	.: Fibrillin
	.: Familial Hyperlipidemia
	Flow Mediated Dilation
FMD	Flow-Mediated Dilation method
FRS	∴ Framingham risk score.
GWASs	∴ Genome-wide association studies
HbA1c	∴ Glycated haemoglobin
HDL	∴ High-Density Lipoprotein
	: Hormone replacement therapy
hsCRP	: High-Sensitivity C-Reactive Protein
HTN	
	: Intercellular adhesion molecule 1.
IL-1	∴ Interleukin -1

List of Abbreviations (Cont...)

Abb.	Full Term
	: Intima-media complex
IMT	: Intima-media thickness
	: Insulin Resistance Atherosclerosis Study
	: Kuopio Atherosclerosis Prevention Study
	: Kuopio Ischaemic Heart Disease Risk Factor Study
	: Left anterior descending artery
	.: Left coronary artery
	.: Left circumflex artery
	.: Low-density lipoprotein.
Lp a	
LVCD	
	: Left ventricular systolic diameter. : Monitored Atherosclerosis Regression Study
	: Multi-Ethnic Study of Atherosclerosis
	: Myocardial Infarction
M-mode	
	.: Matrix metalloprotease
	.: Magnetic resonance imaging
NAC	
NO	
NOS	: Nitric oxide synthase
NSTE-ACS	: Non ST elevation acute coronary syndrome.
PAD	: Peripheral arterial disease.
	∶ Peripheral artery tonometry
	: Prevention Cardio-Vasculaire en Medecine du Travail
	: The Plaque Hypertension Lipid Lowering Italian Study
	: Pravastatin, Lipids, and Atherosclerosis in the Carotid arteries
	: Placental growth factor
	: Pulse wave velocity
	: Right Coronary artery : Regression Growth Evaluation Statin Study
	Systolic blood pressure
SD	
	.: Superficial femoral artery :
	: Segment involvement score
	.: Smooth muscle cells
	: Single-nucleotide polymorphisms
	: ST Elevation Myocardial infarction
	: Vascular cell adhesion molecule 1
VEGF	: Vascular endothelial growth factor
	: Verapamil in Hypertension and Atherosclerosis Study
	∶Very late antigen 4
	: Vascular smooth muscle cell
	.: Years lived with disability
YLLs	: Years lost due to premature death

INTRODUCTION

Toronary artery disease (CAD) is the leading cause of death in the world and is predicted to remain so for the next 20 years (1).

Endothelial dysfunction develops from the first decade of life as a response to genetic and environmental risk factors and seems to be the causal pathway for the initiation and progression of atherosclerosis (2).

A number of large epidemiologic studies have identified numerous risk factors for the development and progression of atherosclerosis. Age is one of the most important risk factors of the disease (3). Although coronary heart disease primarily occurs in patients over 40 years of age, younger men and women may be affected ^(4, 5). Epidemiological studies showed that cardiovascular deaths occur at younger age in low and middle-income countries in comparison to high income countries (6). The prevalence of CAD in young adults is difficult to establish accurately since it is frequently a silent process (7). Although CAD is an uncommon entity in young patients, it constitutes an important problem for the physician and the patient because of the devastating effect of this disease on the more active lifestyle of young patients⁽⁸⁾.

Current guidelines for the primary prevention of CAD recommend initial assessment and risk stratification with global risk score, in which age is the most potent factor determining risk. Recognizing that risk assessment strategies may inadequately assess cardiovascular disease risk in young patients, noninvasive measures of atherosclerosis have emerged as adjuncts to traditional cardiovascular disease risk factors in an attempt to refine risk stratification and the need for more aggressive preventive strategies ⁽⁹⁾.

Non-invasive measurement techniques of atherosclerosis, like carotid artery Bmode ultrasound, aortic pulse wave velocity (PWV), carotid artery duplex scanning and ultrasound-based endothelial function studies have emerged as valuable tools to characterize the physiologic and anatomic structural modifications in the arterial $\text{wall}^{(10)}$.

Aortic stiffness occurs as a result of atherosclerosis, hypertension, ageing or other pathologic conditions. Accordingly; the forward pulse wave travels faster and the arterial waves reflected from the periphery reach the heart earlier (11). The aortic pulse wave velocity (APWV) reflects the central arterial stiffness. It's a marker of atherosclerosis inversely related to distension capacity. It has attracted much interest in recent years as a measure of conduit artery stiffness. Different studies showed that higher APWV is a predictive marker for cardiovascular events, ischemic stroke and coronary artery disease (12).

Ultrasound is used to monitor the carotid intima-media thickness (IMT) owing to its high-resolution, non-invasiveness and ability to detect the early stages of atherosclerotic disease (13). Due to the fact that carotid IMT provides information on the atherosclerosis extent, it can be very useful in the cardiovascular risk assessment. Until now, carotid IMT has been associated with the risk of coronary artery disease, stroke, and myocardial infarction. An increased IMT has been shown to be associated with the presence and extent of coronary artery disease (CAD (14-17)).

AIM OF THE WORK

- 1. To investigate the correlation between aortic stiffness and coronary artery disease presence and severity in young Egyptian adults.
- 2. To correlate between aortic stiffness, carotid intima media thickness and endothelial function in Egyptian adults with CAD.

ATHEROSCLEROSIS

 Δ therosclerosis is the major cause of morbidities and mortalities worldwide ⁽¹⁸⁾.

More people die annually from cardiovascular deaths than from any other cause. Low- and middle-income countries are disproportionally affected: over 80% of CVD (cardiovascular disease) deaths take place in low- and middle-income countries and occur almost equally in men and women⁽¹⁹⁾.

The term atherosclerosis is of Greek origin, meaning thickening of the intimal layer of arteries and accumulation of fat. Fatty material is located in the central core of the plaque, covered by fibrous cap. The term, atherosclerosis consists of two parts; atherosis (accumulation of fat accompanied by several macrophages) and sclerosis (fibrosis layer comprising smooth muscle cells (SMC), leukocytes, and connective tissue)^(20,21).

Normal Artery structure:

An understanding of the pathogenesis of atherosclerosis first requires knowledge of the structure and biology of the normal artery and its indigenous cell types ⁽²²⁾.

The Cell Types that Comprise the Normal Artery

1- Endothelial Cell

The endothelial cell of the arterial intima constitutes the crucial contact surface with blood. Arterial endothelial cells possess many highly regulated mechanisms of capital importance in vascular homeostasis that often go awry during the pathogenesis of arterial diseases ⁽²³⁾. For example, the endothelial cell provides one of the only surfaces, either natural or synthetic, that can maintain blood in a liquid state during protracted contact (Fig1). This remarkable blood compatibility derives in part from the expression of heparin sulfate proteoglycan molecules on the surface of the endothelial cell. These molecules, like heparin, serve as a co-factor for antithrombin III, causing a conformational change that allows this inhibitor to bind to and inactivate thrombin⁽²²⁾.

Review of Literature

The surface of the endothelial cell also contains thrombomodulin, which binds thrombin molecules and can exert antithrombotic properties by activating proteins S and C. Should a thrombus begin to form; the normal endothelial cell possesses potent fibrinolytic mechanisms associated with its surface ⁽²²⁾.

ECs (Endothelial Cells) have a common origin but acquire "bed-specific" characteristics during development. The ECs that form the inner lining of all blood vessels arise during embryogenesis from regions known as the blood islands, located on the embryo's periphery ⁽²⁴⁻²⁶⁾.

Peripheral blood appears to contain endothelial precursor cells that may help repair areas of endothelial desquamation⁽²⁷⁾.

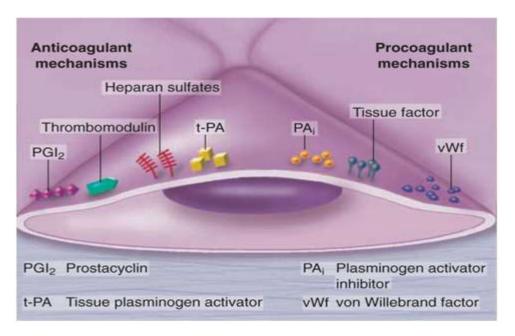
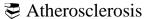



Figure (1): Vascular Endothelial cell (22).

2- Arterial Smooth Muscle Cells

The second major cell type of the normal artery wall, the smooth muscle cell (SMC) has many important functions in normal vascular homeostasis, as a target of therapies in cardiovascular medicine, and in the pathogenesis of arterial diseases. These cells contract and relax and thus control blood flow through the various arterial beds, generally at the level of the muscular arterioles. In the larger types of arteries involved in atherosclerosis, however, abnormal smooth muscle contraction may cause

Review of Literature

vasospasm, a complication of atherosclerosis that may aggravate the embarrassment of blood flow ⁽²²⁾.

In contrast with ECs, thought to derive from a common precursor, SMCs can arise from many sources ⁽²⁸⁾. The heterogeneity of SMCs may have direct clinical implications for explicating several common observations, such as the propensity of certain arteries or regions of arteries to develop atherosclerosis or heightened responses to injury (e.g., the proximal left anterior descending coronary artery), and medial degeneration (e.g., the proximal aorta in Marfan syndrome) ⁽²⁹⁾. The plasticity of SMCs may even extend to giving rise to cells with characteristic and functions of mononuclear phagocytes in atherosclerotic plaques ⁽³⁰⁾.

The layers of the arterial wall:

1- The Intima

Normal arteries have a well-developed tri-laminar structure. The innermost layer, the tunica intima, is thin at birth in humans and many nonhuman species. Although often described as a monolayer of endothelial cells abutting directly on a basal lamina, the structure of the adult human intima is actually much more complex and heterogeneous (22). The endothelial monolayer resides on a basement membrane containing nonfibrillar collagen types, such as type IV collagen, laminin, fibronectin, and other extracellular matrix molecules. With aging, human arteries develop a more complex intima containing arterial SMCs and fibrillar forms of interstitial collagen (types I and III). The SMC produces these extracellular matrix constituents of the arterial intima. The presence of a more complex intima, known by pathologists as diffuse intimal thickening, characterizes most adult human arteries. Some regions in the arterial tree tend to develop thicker intima than other regions, even in the absence of atherosclerosis. For example, the proximal left anterior descending coronary artery often contains an intimal cushion of SMCs more fully developed than that in typical arteries. The diffuse intimal thickening process does not necessarily go hand in hand with lipid accumulation, and may occur in individuals without substantial burden of

Review of Literature

atheroma. The internal elastic membrane bounds the tunica intima abluminally, and serves as the border between the intimal layer and the underlying tunica media (22).

2- The Tunica Media

The tunica media lies under the intima and internal elastic lamina. The media of elastic arteries such as the aorta have well-developed concentric layers of SMCs, interleaved with layers of elastin-rich extracellular matrix. This structure appears well adapted to the storage of the kinetic energy of left ventricular systole by the walls of great arteries. The media of smaller muscular arteries usually have a less stereotyped organization. SMCs in these smaller arteries generally embed in the surrounding matrix in a more continuous than lamellar array. The external elastic lamina bounds the tunica media abluminally, forming the border with the adventitial layer (22).

3- The Adventitia

The adventitia of arteries has typically received little attention, although appreciation of its potential roles in arterial homeostasis and pathology has recently increased. The adventitia contains collagen fibrils in a looser array than is usually encountered in the intima. Vasa vasorum and nerve endings localize in this outermost layer of the arterial wall. The cellular population in the adventitia is more sparse than in other arterial layers. Cells encountered in this layer include fibroblasts and mast cells. Emerging evidence suggests a role for mast cells in atheroma and aneurysm formation in animal models, but their importance in humans remains speculative⁽³¹⁾.