SOME OPTICAL AND ELECTRICAL PROPERTIES OF SEMICONDUCTING MATERIALS IN THIN FILM FORM

1,784 14

THESIS
Submitted for the degree of Ph. D. in Physics

By Hala Mohammed Hosny

M. Sc. (1981)

535.84

TIM

To

The Faculty of Science Ain Shams University

1988

27747

The expertise and continuous support of Dr. A.El Falakey. Assist. Prof of Physics, Fac. of Science, Zagazig Univ.; Dr. H.H.A.Labib, Dr.M.Ibraheem, Assist. Profs. of Physics, as well as Dr. A.Y. Morsy and Dr. S.M. Salah, Lecturers of Physics, Fac. of Education, Ain Shams Univ., are gratefully acknowledged.

The expert knowledge and skills of the technical staff of the Physics Dept. at Univ. College Cardiff were invaluable to this work.

I am also indebted to the members of the research groups in the Physics Depts. of the Fac of Science & Fac. of Education, Ain Shams Univ., and Univ. College Cardiff for their friendship, good humour and encouragement.

Finally. I owe my deepest gratitude to my parents and family for their help, patience and encouragement over the years.

Contents

	Page
Abstract	i
Introduction	1
Chapter I: Theoretical Background	5
I. 1. Murman's method for determining the optical	
constants of absorbing thin films deposited on	
transparent substrates	5
2. The Fermi level for different semiconductors	10
3. Conductivity and mobility in intrinsic	
semiconductors	15
4. The Hall effect	21
5. The thermoelectric effect	28
6. Surface states	33
Chapter II: Apparatus & Experimental Techniques	36
II.1. Experimental technique for preparation	
of samples and determination of their	
thickness.	36
a. The substrate preparation	36
b. The evaporation plant	37
c. The quartz crystal monitor	38

d. The interferometric determination of film	
thickness	38
2. The techniques applied for the determination	
of the optical constants of PbSe	
polycrystalline films	40
a. A brief review of earlier methods	41
b. Methods applied for measurements in the	
present investigation	41
(i) The measuring of transmittance at normal	
incidence	41
(ii) The measuring of reflectance at normal	
incidence	42
3. Experimental techniques for measuring	
transport properties of PbSe films	43
a. Experimental procedure for measuring PbSe	
film resistance	44
b. The technique and circuit employed in Hall	
effect measurements	46
c. The experimental technique used for	
thermoelectric power measurements	48
4. The method employed for obtaining the X-ray	
diffraction patterns of PbSe films	51
5. The effect of ambients on the transport	
properties of the PhSe films	51

 a. For resistivity measurements 	52					
b. For Hall measurements						
6. The apparatus & experimental technique for						
surface analysis						
a. The ESCA system						
b. The ultra high vacuum chamber						
c. The analyser chamber						
d. The X-ray source						
e. Experimental procedure						
Chapter III: The optical properties of	67					
polycrystalline PbSe thin films	σ,					
III.1. The spectral distributions of T and R						
for PbSe thin films	68					
2. The determination of the refractive						
index (n) and the absorption index (k)	68					
3. The spectral dispersion of n and k for						
PbSe films	70					
4. Determination of high frequency and						
static permittivities	71					
5. The dependence of the absorption						
coefficeient on the incident frequency	73					
6. Discussion	75					

time non-respective face of the control of the cont

Chapter IV: Electrical transport properties of PbSe	
thin films	79
IV.1 The resistivity dependence on the	
<pre>deposition rate of PbSe thin films (i) in air</pre>	81 81
(ii) in vacuum	82
2. The ageing effect on the resistivity of PbSe	
films	83
(i) in air	83
(ii) in vaccum	83
3. Determination of the lattice parameters of PbSe	•
thin films	84
4. The dependence of the crystallite size upon	
film thickness .	87
5. Variation of the X-ray profile with annealing	
temperature	88
 The depndence of PbSe film resistivity ₱ on 	
the thickness d	89
(i) in air	89
(ii) in vacuum	90
7. PbSe film resistivity dependence on	
temperature (in air)	91
8. Determination of bulk resistivity 🕰 & mean	
fwoo nath l	95

9. Film resistivity dependence on temperature	
under vacuum	98
10. Variation of film resistivity w.r.t. ambient	
gases, particularly oxygen	100
11. The dependence of the Hall coefficient $R_{\!\scriptscriptstyle H}$ on	
the film thickness d	102
12. The variation of the charge density and Hall	
mobility (u_{H}) with the thickness (d)	103
13. The Hall measurements of PbSe films under	
vacuum	104
a. Variation of the transport properties with	
time	106
b. The effect of ambients on the Hall	
measurements	107
14. The variation of the thermoelectric power of	
PbSe films with temperature	111
15. The variation of the charge carriers density	
with the film temperature	112
16. Discussion	114
Thin films	126
Chapter V: Surface Analysis of PbSe Thin films	123
V.1. Results and observations	
2. Discussion	134

Conclusions					140
	Suggestions	for	further	investigations.	145
Referen	ces				146
Arabic :	Summary				

Abstract

Lead selenide thin films of different thicknesses (25-1400 nm.) were deposited onto glass/quartz substrates in vacuum of 10^{-5} Torr as well as 10^{-10} Torr. X-ray diffraction patterns showed that these films have polycrystalline structure.

The optical constants (the refractive index, n, the absorption index, k and the absorption coefficient, α) of the lead selenide films were determined. In and k were independent of the film thickness in the range 30-1000 nm. In showed anomalous dispersion in the region of the fundamental absorption edge (~ 3 μ m).

These optical constants were used to determine the high frequency dielectric constant ($\in \ \approx 20$) and the static permittivity ($\in \ \approx 195$).

The linear relations of α^2 = f (h ν) and α^2 = g (h ν) indicated the existence of both direct and indirect optical transitions, with energy gap values 0.35 and 0.27 ev respectively.

The electrical transport properties (resistivity, Hall coefficient and thermoelectric power) of lead selenide films were studied in air, in vacuum and in ambient gases. The electrical resistivity dependence on film thickness, measured in air or in vacuum had basically the same behaviour. The Hall measurements showed that the majority of the lead selenide films of thicknesses below 800nm were ptype; and above this thickness the films were usually n-type.

The ambient gases Ar, He and N_2 had no considerable effect on the resistivity and Hall measurements of the films. On the other hand, oxygen had an obvious role in altering the identity of the free charge carriers of the lead selenide films.

The concentration of the charge carriers calculated from the electrical resistivity. Hall and thermoelectric power measurements had the same order of magnitude $(10^{17}-10^{18}~{\rm cm}^{-3})$.

The interaction between oxygen (as well as the other ambient gases) and lead selenide surfaces was studied through surface scans carried out on the ESCA III

The effect of oxygen on the different Se and Pb photolines was studied in details. Oxygen reactivity appeared more pronounced in the Se-excess samples; being p-type in conduction. The oxide layer formed at exposures of 1012L of oxygen was estimated to be in the monolayer range.

INTRODUCTION

INTRODUCTION

Semiconductors, which could be chemical elements, metallic oxides, sulfides and selenides, as well as halide and carbide compounds; possess properties which commend them to our most interested attention. In the course of seeking new sources of energy, different semiconductors were used in varistors, thermistors, transistors and photoelectric devices which infilterated and revolutionized the field of electronics.

They are usually classified according to the nature of the particles which carry current into ionic and electronic semiconductors.

The characteristics of a family of polar semiconductors, consisting of PbS, PbSe and PbTe, have played an important role in providing experimental foundation for theories of various semiconductor phenomena.

These compounds have the cubic rock-salt structure which typifies ionic compounds, and although their chemical behaviour can best be described by regarding them as ionic, their electrical properties bear a greater resemblance to those of group IV elements.

A number of researchers have found that these lead chalcogenides possess a number of interesting features, among which are the following:

re di care e la citati della colle della di di cita della collega di la collega di care di care di care di car

- (i) They defy the usual rule that in a series of similar compounds the energy gap falls as the molecular weight increases.
- (ii) Their static dielectric constants are unusually high (178, 206 and 380 for PbS, PbSe and PbTe respectively) as estimated by Burstein et al. [1] among others. Putley [2] indicated that such high values may account for the absence of impurity activation energies even in the purest crystals; and for the absence of ionized impurity scattering at low temperatures.
- (iii) Unlike the majority of semiconductors, the mobility does not fall as the temperature is reduced to the He range. It generally tends to a constant value or may continue to rise slowly. This behaviour is more like that of a metal; showing a constant residual resistance.
- (iv) The mobilities of holes and electrons are of comparable magnitude; unlike those of say, the III-V compounds, which possess very high mobility ratios.