Physical Dosimetry for Some Sensitive Organs in Patients Treated by Ionizing Radiation

THIS IS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF

MASTER OF SCIENCE

١N

PHYSICS

TO

PHYSICS DEPARTMENT FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

BY

AMIN EL-SAYED AHMED AMIN

DEMONSTRATOR OF RADIATION PHYSICS
FACULTY OF MEDICINE
AIN SHAMS UNIVERSITY

1984 A.R.E. IN THE NAME OF THE MERCIFUL GOD

To my parents

SUPERVISORS

- Prof. Dr. ZEINAB MELIGY MOHAMED, Prof. of Nuclear Physics, Physics Dept., Faculty of Science, Ain Shams University.
- Prof. Dr. ABDEL HADY ABOU EL-HAJ, Head of Radiotherapy and Nuclear Medicine Dept., Faculty of Medicine, Ain Shams University.
- Dr. MOHAMED FARID NOOMAN, Chief of Radiophysics Unit, Faculty of Medicine, Alexandria University.

ACKNOWLEDGMENT

I am sincerely grateful to Prof. Dr. A.ABOU EL HAJ, head of Radiotherapy and Nuclear Medicine Dept., Faculty of Medicine, Ain Shams University, for his valuable suggestions, and fruitful discussions during this work.

I wish to express my appreciation and sincere thanks to Prof. DR. ZEINAB MELIGY, Prof. of Nuclear Physics, Physics Dept., Faculty of Science, Ain Shams University, for her kind supervision and encouragement throughout this work.

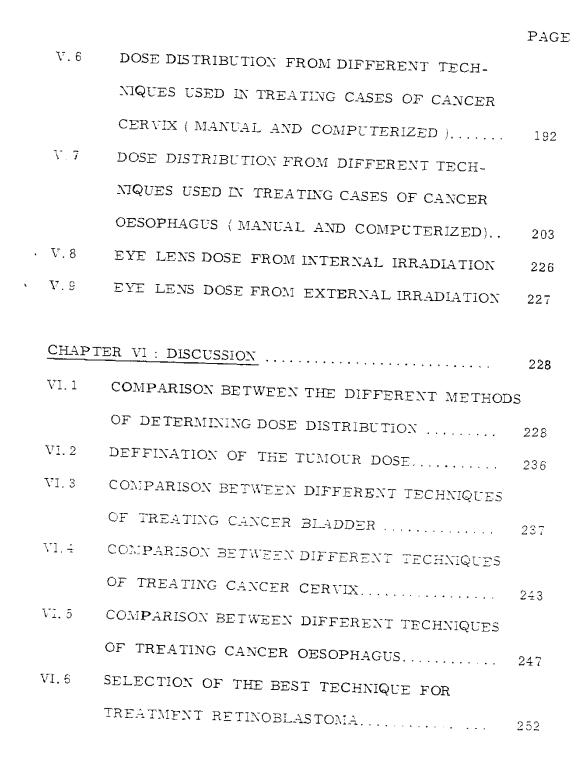
I am grateful also to Dr. M.F. NOOMAN, Chief of Radio-physics Unit, Faculty of Medicine, Alexandria University, who suggested the problem and for his continous help, support and discussions during this work.

I am sincerely wish to thank Dr. N.EL-SHERBINI, Lecturer of Medical Physics, Kasr El Einy Centre of Radiation Oncology and Nuclear Medicine, Faculty of Medicine, Cairo University, for much help and interest with the experimental work.

I would like also to thank Dr. LILA F. MATTA. Assistant Prof. of Radiotherapy and Dr. ANOIR M. RADY, Radiotherapest, Radiotherapy and Nuclear Medicine Dept., Faculty of Medicine, Ain Shams University, who have helped me in carrying out part of this work. I would like also to thank the Ophtholmology staff, for allowing me to carry out some ophtholmological dosimetry.

CONTENTS

		PAGE
CHAP'	TER 1 : INTRODUCTION.	1
I.1	HISTORICAL DEVELOPMENT OF DOSIMETRY	3
1.2	AIM OF THE WORK	9
CHAPT	TER II : RADIOSENSITIVITY AND SENSITIVE ORGANS	10
II. 1	RADIOSENSITIVITY	10
II.1.1	Law of Bergonie and Tribondeau	12
II.1.2	Cytoplasm	13
II.1.3	Organ Function	14
II. 2	SENSITIVE ORGANS	14
II.3	NORMAL TISSUE TOLERANCE DOSE	19
	a- Low Tolerance Tissues	19
	b- Moderate Tolerance Tissues	20
	c- High Tolerance Tissues	20
ĭI.4	RADIATION HAZARDS TO SOME SENSITIVE ORGANS	20
II.4.1	Bone Marrow	20
II.4.2	Eye Lens	23
11.4.3	Spinal Cord	24
II.4.4	Lung	25
II.4.5	Rectum	26
11.4.6	Femoral Head	27


СПат		PAGE
	PTER III : RADIATION DOSIMETRY	28
III. 1	BONE MARROW DOSE	28
	i- Dtermination of Exposure at the Bone Marrow Sites	28
	a) Phantom Measurements	29
	b) Calculation From Incident Exposures	30
	ii- Conversion of Exposure to Absorbed Dose at the	
	Bone Marrow sites	32
	iii- Determination of the Average Bone Marrow Dose	34
	a) Anatomical Models for Active Bone Marrow	
	Distribution	34
	b) Anatomical Coordinate System	38
III. 2	THERMOLUMINESCENCE DOSIMETRY	41
III.2.1		42
III.2.2		4 2
	cent Phosphors	43
III.2.3	Lithium Fluoride (LiF)	
III.2.4		4 5
III.2.5		45
III.2.6	LiF Emission Spectrum	46
III. 2. 7	Response Versus Dose and LET	47
III.2.8	Phonton Energy Dependence	50
III. 2. 9	Comparison Between TLD and Ionization Chamber	51
III.2.10	Fading Characteristics of Thermoluminescent Lif and	53
III. 2. 11	Stability of Stored Signal	53
· · · -	Variation in Sensitivity of LiF with Re-use	57

		PAGE
III. 2. 12	High Temperature Pre-Irradiation Anneal	58
III. 2. 13	Low Temperature Pre-Irradiation Anneal	64
III. 2.14	Post-Irradiation Annealing	65
III. 2.15	LiF Sensitization	65
III. 3	COMPUTER CALCULATION OF DOSE INSTRIBUTION	68
III.3.1	Mathematical Model for Computation of Two-Dimensional	
	Dose Distribution	70
	A) The First Model	70
	i- Calculation of Central Axial Depth Dose	70
	ii- Different Methods of Calculating the Off-axis	
	Ratio and the Resulting Dose Distribution	80
	B) Second Model	90
III.3.2	Dose Distribution at Normal Incidence with a Wedge	
	Filter	96
III. 3.3	Correction for Surface Obliquity	102
III. 3,4	Correction for Body Inhomogeneity	105
III. 4	COBALT-60 OPHTHALMIC APPLICATORS	112
CHAPTE	R IV : MATERIAL AND METHODS	117
IV.1	THE TELECOBALT UNIT	117
IV.2	WHOLE BODY PHANTOM	118
IV. 3	THERMOLUMINESCENT DOSIMETRY	120
IV.3.1	Themoluminescent Dosimeter System	120
IV.3.2	Dose Measurements	122
IV.3.3	Calibration of TLD	199

		PAGE
IV. 4	CALCULATION OF DOSE DISTRIBUTION	125
IV.4.	1 Manual Calculation of Dose Distribution	125
IV.4.	2 Computer Calculation of Dose Distribution	126
IV.4.		
	bution	127
	i- Single-field Dose Distribution	127
	a) Axial Dose Distribution	128
•	b) Dose Distribution in the \tilde{x} -y plane	129
	c) Dose Distribution at Normal Incidence with	
	a Wedge Filter	132
	d) Obliquity Correction	133
	e) Inhomogeneity Correction	i33
	f) Two-dimensional Dose Distribution Expre-	
	ssion	134
	ii- Dose Distribution From Multible Stationary	
	Beams	135
IV. 5	DETERMINATION OF DOSE RECEIVED BY SENSITIVE	
	ORGANS IN TREATING CASES OF CANCER URINARY	
	BLADDER	136
IV.5.1	Volume to be Treated	
IV.5.2	Localization	
IV.5.3	The Techniques Used in Treating the Carcinoma of the	- 00
	Urinary Bladder	139
	A) Three Field Technique	139
	B) Four Field Technique	I U D
		141

		PAGE
IV.5.4	Determination of Mean Active Bone Marrow Dose	
	in Cases of Cancer of The Urinary Bladder	141
IV.5.5	Determination of the Rectal Dose and Femoral Head	
	Dose in Cases of Cancer of the Urinary Bladder	144
IV.6	DETERMINATION OF DOSES RECEIVED BY	
	SENSITIVE ORGANS IN TREATING CASES OF	
	CANCER CERVIX	146
IV.6.1	The Volume to be Treated	146
IV.6.2	Localization	147
IV.6.3	The Techniques Used in Treating the Carcinoma of	
	the Cervix	150
	A) Three Field Techniques	150
	B) Four Field Techniques	150
IV.6.4	Determination of the Recall Dose and Femoral Head	
	Dose in Cases of Cancer Cervix	154
IV.7	DETERMINATION OF DOSES RECEIVED BY	
	SENSITIVE ORGANS IN TREATING CASES OF	
	CANCER OESOPHAGUS	154
IV. 7. 1	Volume to be Treated	154
IV.7.2	Localization	154
	The Techniques Used in Treating Cases of Cancer	
	oesophagus	157
IV.7.4	Determination of the Doses Delivered to the Lungs	
	and Spinal Cord in Radiation Treatment of Cases of	
	Cancer Oesophagus	160

		PAGE
IV.8	THE SPECIFICATION OF TUMOUR DOSE	164
IV.9	HEAD PHANTOM	165
IV.10	DETERMINATION OF THE EYE LEND RADIATION	
	DOSE IN THE TREATMENT OF RETINOBLASTOMAS	167
	A) Internal Irradiation	167
	B) External Irradiation	168
G**		
	ER V: RESULTS	169
V. 1	CALIBRATION OF TLD RODS	169
V. 2	COMPARISON BETWEEN MEASURED AND CAL-	
	CULATED DOSE DISTRIBUTION (MANUALLY AND	
	USING COMPUTER)	169
	A) Three-field Technique	171
	B) Box Technique	171
V.3	COMPARISON BETWEEN MANUALLY DETERMINED	
	AND COMPUTER CALCULATED PERCENTAGE	
	DEPTH DOSE	175
V.4	COMPARISON BETWEEN THE ABSORBED DOSE IN	
	ACTIVE BONE MARROW FROM TWO TECHNIQUES	
	USED IN TREATING CASES OF CANCER BLADDER.	178
V.5	DOSE DISTRIBUTION FROM DIFFERENT TECHNI-	
	QUES USED IN TREATING CASES OF CANCER	
	BLADDER (MANUAL AND COMPUTERIZED)	1.00

	PAGE
SUMMARY	
REFERENCES	257