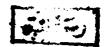
ATHESIS

entitled


SOME APPLICATIONS OF INTERPERCHETRY
TO LENGTH HETROLOGY

Submitted to
Ain Shame University
In Partial Fulfilment of the Requirements
for the Degree of Master of Science

BY

WAFAA HASSAN HASSAN OSMAN
Demonstrator in Physics
Faculty of Science
Cairo University

4952

National Institute of Metrology Dokki, Cairo, Egypt.

1971

25.00 (1.00 pt.) (1.00 pt.) (1.00 pt.)

ACICNOWLEDG LE TENT

I wish to express my gratitude to Professor Dr.

N. Barakat, Dean of the Faculty of Science, Ain-Shams University for suggesting the subject investigated and for his
helpful guidance.

I would like also to express my thanks to Dr. S.R. Haddara, Director of the National Institute of Netrology, where this work has been done, for his interest and encouragement.

My deep thanks and appreciation are due to Dr. S. Mokhtar, Head of the Unit of Optical Standardization of length for her continuous supervision of the work.

My thanks are also due to the members of the Unit for their assistance.

CONTEHTS

_		Page
General	Introduction	1
	CHAPTER I	
Con	struction of a New Fabry-Perot Etalon Mirror and Its Application in Length Metrology.	
I.1.	Previous Work	4
1.2.	The choice of Se as one of the alternate layers in the construction of Fabry-Perot mirrors	8
I.2.a.	Summary	8
I.2.b.	The optical properties of evaporated Se-film at different thicknesses in the visible region.	9
I.2.c.	The optical phase properties of Se-layer of thickness 2000 A	11
I.2.01	Theoretical derivation of the phase properties of non-absorbing material	11
I.2.cii	Experimental confirmation showing that such Se- layer has optical phase properties similar to those of non-absorbing material	15
I.2.d	The intensity distribution of fringe system at reflection using evaporated Se-layer of thickness 2000 Å as a coating layer of interferometer	18
I.3.	Construction of Fabry-Perot etalon of alternate Se and MgF2	20
I.3.2	Calibration curve of Ag, Se, and MgF2	21
I.3.b	Experimental Results	23
L.3.0	Generalization of formulae for reflection of light at more than two thin films	25

		Page
I.3.d		
	A TO GAME OF THE MULTINES WASHING AS OF A TANAMARE A	
		71
I.3.e	Conclusion	31
		33
I.4.	The visibility of multiple beam Fabry-Perot transmitted system .	
	cransmitted system	34
I.4.a	The general expression for the visibility of Pabry-Perot multiple beam interference fringes in transmission taking into account the width of the spectral line	
	or the spectral line	34
I.4.b	Experimental relation between the visibility and path difference	
		41
I.4.c	Construction of the emulsion calibration curve .	42
I.4.d	Experimental work and observations for Fabry-	
	Perot transmitted system	43
I.4.e	Experimental Results	44
	CHAPTER II	
	Determination of the Optical Constants of	
	Selenium Film.	
II.1.	Previous Work	47
II.2.	Aim of the Work	50
II.3	Theory	50
II.3.a	The transmission coefficient of the uncoated	-
	a dra frate	50
II.3.b	The transmission coefficient of the substrate costed with a weakly absorbing thin film and	
		52

									Page
11.4.	Experimental	Procedure	 		• •		••		56
11.5.	Experimental	Results	 	••	••	••	••	••	60
	References		 						64

CHAPTER I

CONSTRUCTION OF A NEW FABRY PEROT DIALON NIRROR

AND ITS APPLICATION TO LENGTH METROLOGY

GLARAL LIPROD CTION

Experiments on application of interferometry for the measurement of length in terms of light waves are continually performed in laboratories of Netrology. The main interference systems are basically Fabry-Perot fringes systems in transmission and at reflection using a single or compound Fabry-Perot interferometer.

Investigations on the spectroscopic characteristics of spectral sources used in length measurements, namely the half-width of the emitted spectral lines used illuminating the interferometer, are of considerable importance as the half-width affects fringe visibility on which many methods of length measurements are based. There is always a demand for increasing the maximum distance over which fringes have good visibility.

In the present work experiments were carried out on the possible use of the semi-conductor Se in alternation with the dielectric MgF₂ as a Fabry-Perot mirror since the evaporation process of Se is much easier and takes shorter time as compared with any other dielectric used in alternation with MgF₂. Also selenium thin films possess a high refractive index value and a very low absorption coefficient in the spectral region investigated. It has been found experi-

mentally that an evaporated Se thin film of thickness 2000 A possesses the properties characteristic of dielectric thin films where the alsorption coefficient is nearly zero and is of a suitable high refractive index. It is most suitable for use as one of a multi-layer coating of Fabry-Perot stalon in alternation with quarter wave length film of MgF₂.

Chapter (I) deals with the construction of Fabrylerot mirrors consisting of three, five and seven alternate
multi-layers of Se and MgF2 reaching a reflectance of
68%, 74% and 87% respectively and absorption of nearly zero,
1% and 1% respectively indicating the magnitude of the
increase in the reflection coefficient with increasing the
number of layers at \$\lambda\$ 6438 \$\lambda\$.

Chapter (II) deals with the experimental determination of the optical constants of an evaporated Se thin film by the method derived by Valeev $(1963)^{\left(1\right)}$. It is applied here for the first time in the visible region for Se and is based on the measurement of the transmission coefficient of uncoated substrate T_0 and coated substrate T. Then from the variation of T_0 and T with wave lengths, the refractive index of the substrate and the optical constants of Se are obtained.

The values of the optical constants n and k for Se are found to be in wood agreement with the published data.

1.1. Provious Work

It was Probable and force (2) who, in 10%, therefore a new era of precision into optical interferometry by leveloping both the theory and practice of their celebrated plane parallel plate interferometer.

Single and Multi-layer coating of high and low refractive index dielectric are used for enhancing the reflectivity of the glass plate.

In the visible region, Pfund $(1934)^{(3)}$ increased the reflectivity of a glass plate to 31% by depositing $\lambda/4$ film of ZnS. By evaporating alternate layers of cryolite and TiO2, Cartwright and Turner $(1959)^{(4)}$ obtained a reflection coefficient of 0.85. Banning $(1947)^{(5)}$, Dufour $(1948)^{(6)}$, Kluber and Jarrett $(1952)^{(7)}$, and Stone $(1953)^{(8)}$ studied the optical performance of multi-layers coating using ZnS and cryolite films. Kluber and Jarrett attained the value of 94% at λ 5461 Å and about 97% for nine multi-layers respectively, while Stone obtained the value of R = 97% for nine multi-layers at λ 5000 Å. A graphical vector method was described by Turner $(1950)^{(9)}$ for deriving the refractive index required in multi-layer reflection coating for obtaining best achromatic condition for compound anti-reflection layers.

Wincomp (1992) (19) eliminar reflection coefficient for layers of anyolite and ErB each of Ay4 thick which or in good agreement with those calculated from alcadiant free and theory.

Tolansky $(1955)^{(11)}$ used multi-layer film of alternate high and low refractive index of $\lambda/4$ thickness of reflectivity ranging from 0.31-0.97 for multiple beam interferometry at reflection. Vasicek $(1953)^{(12)}$ solved theoretically the problem of the reflection of light from glass with dielectric films.

Korolev and Sukhanovskii $(1954)^{(13)}$ produced Fabry-Perot etalon with dielectric mirrors consisting of multi-layers coating of ZnS and MaAlF6 each layer of thickness $\lambda/4$, by evaporation in a high vacuum. A high reflectivity of >87% and higher resolution with practically no absorption were characteristic of seven layers in the visible and infra-red regions. Giacomo $(1955)^{(14)}$ computed the transmission of dielectric multi-layer thin film of thickness $\lambda/4$ and applied such method to Fabry-Perot interferometer.

Baumeister and Stone (1956)⁽¹⁵⁾ obtained a broad region of high reflectivity exceeding 0.90 from λ 4000 Å - 7200 Å which was secured with a complex 15 alternate multilayers of ZnS and cryolite all of different thicknesses.

æ.,

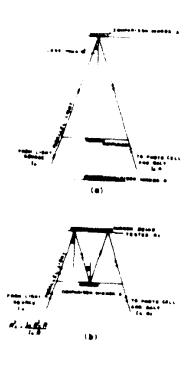


Figure (1)

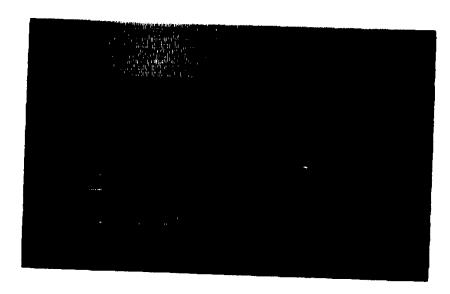


Plate (1)

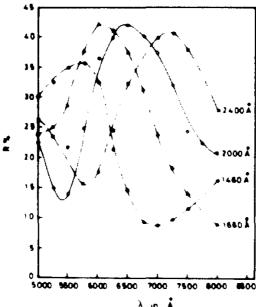


Fig (2a) Var ation of reflectivity R with water ength A at different

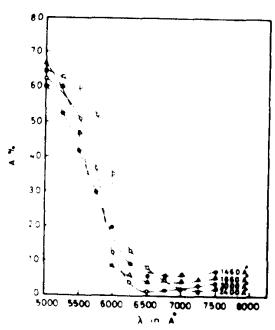


Fig. 201 Variation of absorption A with wave-length λ at different thicknesses of Sellaver