Interleukin 7: A Proposed Role in Primary Immune Thrombocytopenia Thesis

Submitted For Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Radwa Mohamed Salah El-din M.B.B.,Ch. - Ain Shams University

Supervised by **Prof. Nahela Ahmed Shalaby**

Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Dr. Shaimaa Abdelmalik Pessar

Lecturer of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2015

Acknowledgment

All praise be to Allah and all thanks. He has guided and enabled me by His mercy to fulfill this thesis, which I hope to be beneficial for people.

My deepest and warmest gratitude to my great supervisor Prof. Dr. Nahela Ahmed Shalaby, Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University, who in addition to her valuable guidance and supervision, has provided me with a great deal of support, encouragement and Knowledge.

I would like to record my cardinal thanks to Dr. Shaimaa Abdelmalik Pessar, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her great care, valuable instruction, constant help and helpful advice.

Radwa Salah

Dedication

My special thanks are dedicated to my Mother, Father, my brothers and my lovely sister for their endless support to me, and for pushing me forward all the time.

My special thanks are dedicated to my husband for his help and encouragement to deliver this work. His immense support and belief have always kept me going through the hardest times.

My special thanks and whishes are dedicated to my little Prince (Eyad) who filled my life with happiness

List of Contents

List of Tables	4
List of Figures	7
List of Abbreviations	9
Introduction1	2
Aim of the Work 15	
Review of Literature	
Platelets physiology	
Platelet disorders46	
Idiopathic thromboytopenic purpra And Interleukin 780	
Subjects and Methods114	
Results125	
Discussion146	
Summary and Conclusion153	
Recommendations155	
References156	
Arabic Summary189	

List of Tables

Table No.	Title
Table (1):	Maturation Stages of Megakaryocytes
Table (2):	Dense bodies' Content and Function.
Table (3):	α -Granules Content and Function.
Table (4):	Lysosomes Content and Function.
Table (5):	Pathophysiologic classification of thrombocytopenia:
Table (6):	Scoring system for the extent of bleeding
Table (7):	Initial clinical finding in children with ITP:
Table (8):	International ITP Working Group Consensus.
Table (9):	Clinical, demographic and laboratory ristics of the whole patient groups
Table (10): character	Clinical, demographic and laboratory ristics of the active patient group
Table (11):	Clinical, demographic and laboratory

- characteristics of the remittent patient group
- **Table (12):** Clinical, demographic and laboratory characteristics of the control group
- **Table (13):** Statistical comparison between the control group and the whole patient groups regarding the studied parameters

- **Table (14):** Statistical comparison between the control group and active patient group regarding the studied parameters
- **Table (15):** Statistical comparison between the control group and remittent patient group regarding the studied parameters
- **Table (16):** Statistical comparison between the active and remittent patient groups regarding the studied parameters
- **Table (17):** Correlations of BM IL7 and plasma IL7 level of ITP patients in active group with plt, TLC and Hb:
- **Table (18):** Correlations of BM IL7 and plasma IL7 level of ITP patients in remittent group with plt, TLC and Hb:
- **Table (19):** Diagnostic performance of plasma IL7 in differentiation between active ITP patients and control group:
- **Table (20):** Diagnostic performance of plasma IL7 in differentiation between all ITP cases and control group:
- **Table (21):** Group 1: Patients in active phase
- **Table (22):** Group 2: Patients in remession phase
- **Table (23):** Group 3: control subjects

List of Figures

Title
Light microscopy of Wright-stained smear reveals platelets as
small, anucleated fragments with occasional reddish granule
Microscope showing resting platelets as discoid form
Origin and development of megakaryocytes
Megakaryocytes transition from immature cells
Platelet internal structure
Platelet plasma membrane
Dense tubular system
The Sol-Gel Zone
Diagram showing platelet cytoskeleton
Activated platelets showing pseudopodia emission
Initiation phase of platelet activation. (Updated from Ledford-
Kramer M.platelets: structure and function,testing and
pharmacologic inhibition.
Extension phase of platelet activation (Updated from
Ledford- Kramer M.platelets: structure and function, testing
and pharmacologic inhibition.
Platelets secretion
Platelet stabilization and thrombus formation (Updated from
Ledford- Kramer M.platelets: structure and function.)
Importance of blood flow in the regulation of platelet
aggregation
Algorism illustrating intrinsic and extrinsic coagulation

	pathway
Figure 17	A cell based model of coagulation showing initiation,
	amplification, and propagation
Figure 18	Mechanism of heparin induced thrombocytopenia
Figure 19	Antiplatelet-antibody-induced destruction of platelets (P) in
	chronic idiopathic thrombocytopenic purpura
Figure 20	Clinical Features of Immune Thrombocytopenic Purpura.
	Panel A shows extensive petechiae and purpura on the legs of
	a child with immune thrombocytopenic purpura. Panel B
	shows a conjunctival hemorrhage.
Figure 21	Number of megakaryocytes slightly increased in an otherwise
	normal bone marrow biopsy in ITP patient
Figure 22	Structure of the human and murine IL-7 genes.
Figure 23	IL-7 shares the common cytokine receptor γc with IL-2, IL-4,
	IL-9, IL-15, and IL-21
Figure 24	T-cell development stages in relation to thymic architecture
Figure 25	
Figure 26	Comparison between all studied groups as regards BM IL7
	and Plasma IL7
Figure 27	Correlation study between IL7 BM and Plt. Count among
	active group
Figure 28	Correlation study between IL7 PB and Plt. Count among
	active group
Figure 29	Correlation study between IL7 BM and WBCs Count among
	rem. Group
Figure 30	ROC curve analysis showing the diagnostic performance of
	IL7 PB for discriminating patients groups from control

List of Abbreviations

Abb	Full Term
AA	Aplastic Anemia
ADAM	A Disintegrin And Metalloprotease with
TS	Thrombospondin
ADP	Adenosine Diphosphate
ANA	Antinuclear antibodies
aPTT	Activated partial thromboplastin time
ATG	Antithymocyte globulin
ATIII	Antithrombin III
ATP	Adenosine triphosphate
BFU-	Burst-forming unit-megakaryocyte
MK	Burst-forming unit-megakaryocyte
BFU-	MK burst-forming unit
MK	Wix burst-forming unit
BUN	Blood urea nitrogen
CAMT	Congenital Amegakaryocytic
CHIVII	Thrombocytopenia
CBC	Complete blood count
CFU-	Colony-forming unit
GEMM	Colony forming unit
CFU-	Colony-forming unit-megakaryocyte
MK	colony forming unit inegulary oeyte
CMP	Common myeloid progenitor
CV	Coefficients of variation
CXCR4	Chemokine type 4 receptors
DIC	Disseminated Intravascular
	Coagulopathy

No

Nitric oxide

DITP	Drug-induced thrombocytopenia
DMS	Demarcation membrane system
EDTA	Ethylene diamine tetra acetic acid
ELISA	Enzyme-linked immunosorbent assay
FDP	Fibrin degradation products
GDP	Guanosine diphosphate
GP	Glycoprotein
GTP	Guanosine triphosphate
HCV	Hepatitis C virus
HIPA	Heparin-induced platelet aggregation test
HIT	Heparin -induced thrombocytopenia
HIV	Human immune deficiency virus
HLA	Human leukocyte antigens
HPA	Human Platelet Antigen-1a
HSC	hematopoietic stem cell
HUS	Haemolytic uraemic syndrome
HUS	Hemolytic uremic syndrome
IC	Intracranial
Ig	Immunoglobulin
IL7	interleukin 7
IL8	interleukin 8
ITP	Idiopathic Thrombocytopenic Purpura
IWG	International Working Group
KMS	Kasabach-Merritt Syndrome
LDH	Lactate Dehydrogenase
MHC	Major histocompatibility complex
MPV	Mean platelet volume
NAIT	Neonatal alloimmune thrombocytopenia
NAP-2	Neutrophil activating peptide 2

TNF-a

PAF Platelet activating factor PAI-1 Plasminogen activator inhibitor-1 **PCR** Polymerase chain reaction **PDGF** Platelet-derived growth factor PF4 Platelet factor 4 PGI2 Prostaglandin I2 POP Post transfustion purpura PT Prothrombin time PTP Post transfusion purpura **SCCS** Connected canalicular system SLE Systemic lubus erythrematosis TF Transcription factors TFPI Tissue factor pathway inhibitor TGF-B Transforming growth factor-B TMA Thrombotic microangiopathies tPA Tissue plasminogen activator TPO thrombopoietin **TSH** Thyroid stimulating hormone TSP1 Thrombospondin-1 uPA Urokinase plasminogen activator Vascular endothelial growth factor **VEGF VWF** von Willibrand factor **TSLP** Thymic stromal lymphopoietin RT-Reverse transcription polymerase chain **PCR** reaction Peripheral blood mononuclear cells **PBMCs BMNC** Bone marrow mononuclear cells S IFN-g Interferon-g

Tumor necrosis factor-a

CTL Cytotoxic T lymphocyte

GWAS Genome wide association studies

MS Multiple sclerosis

T1D Type 1 diabetes

RA Rheumatoid arthritis

IBD Inflammatory Bowel Disease

ROC Receiver operating characteristic curve

Sn Sensitivity

Sp Specificity

PPV Positive predictive value

NPV Negative predictive value

TH1 T helper 1

TH2 T helper 2

Primary ITP is an autoimmune disorder characterized by isolated thrombocytopenia (peripheral blood platelet count <100 \times 10⁹/L) in the absence of other causes or disorders that may be associated with thrombocytopenia (*Rodeghiero et al., 2009*).

The diagnosis of primary ITP remains one of exclusion; no robust clinical or laboratory parameters are currently available to establish its diagnosis with accuracy (*Cooper et al.*, 2006).

The dominant clinical manifestation is bleeding, which correlates generally with severity of the thrombocytopenia. Most cases are considered primary (Thereafter designated ITP), whereas others are attributed to coexisting conditions (secondary immune thrombocytopenia) (*Stasi and Evangelista et al.*, 2008).

The disease and its most widely accepted abbreviation, ITP, has variably been defined as "immune thrombocytopenic purpura", "idiopathic thrombocytopenic purpura", and most recently "immune thrombocytopenia" (*Ruggeri et al., 2008*).

An International Working Group (IWG) consensus panel of both adult and pediatric experts in ITP recently provided guidance on terminology, definitions, and outcome criteria for this disorder.

The IWG defines ITP as newly diagnosed (diagnosis to 3 months), persistent (3 to 12 months from diagnosis), or chronic (lasting for more than 12 months) (Rodeghiero et al., 2009).

Historically, ITP was believed to be caused by increased platelet destruction at a rate that exceeded production by a compensating bone marrow. New knowledge has questioned this model, providing evidence that platelet production is also decreased in many patients with ITP (*Bromberg*, 2006).

The pathology of ITP is heterogeneous and complex. Besides auto-reactive B lymphocytes secreting antiplatelet antibodies and being considered as the primary immunologic defect in ITP, abnormality of cellular immunity, such as increased Th1/Th2 ratio, T-cell-mediated platelet lysis and reduced numbers and poor functions of circulating regulatory T cells (Tregs), has also been widely demonstrated in ITP (*Hui-Yuan et al.*, *2014*).

Interleukin 7 (IL-7), a member of IL-2 family, is produced by bone marrow stromal and epithelial cells (*Bradley et al.*, 2005). It acts through a receptor that is comprised of two chains: IL-7R alpha (CD127) and gamma chain (CD132). IL-7R is highly expressed on resting T cells except CD4+CD25+ Tregs (*Seddiki et al.*, 2006).

IL-7 is critical for T-cell development, survival,