STATEMENT

This dissertation is submitted to Ain Shams University for the degree of M.Sc. in Electrical Engineering.

The work included in this thesis was carried out by the author in the department of Electronics and Computer Engineering , Ain Shams University , from September 1985 to December 1988 .

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date : 25 / 17 / 1988

Signature

Name : Wahied Gharieb

TO MY FAMILY

ACKNOWLEDGMENT

Deepest gratitude and thanks are due to Prof.

Gamal M. Aly for his supervision, precious guidance and advices. He helped me always to overcome the difficulties encountered during this work.

Acknowledgment is also due to the staff of the department of Electronics and Computer Engineering , Ain Shams University who helped me to accomplish my work.

ABSTRACT

This thesis is concerned with the analysis, design and simulation of variable structure control systems (VSS) in general state space form. A detailed study has been made to find the Reachability Conditions that will guarantee the hitting the sliding hyperplan(s) from any point in the state space.

Stability conditions of the resulting motion along the sliding regime are established. Invariance conditions for random disturbance and parameter variations on the variable structure control systems has been investigated. Minimum preliminary response time before switching occur has been achieved by investigating the controller chatter gains.

Large scale variable structure control systems are designed by decomposing them into subsystems which are linked together under supervisory control (Decentralized Control).

A computer aided interactive design package has been developed for the variable structure control systems, expressed by a general form of the state space continuous and discrete models.

Practical application has been implemented on thermal process by using a PC microcomputer, its control algorithm is designed according to variable structure control system techniques.

Table of Contents

	Page
ABSTRACT	i
Table Of Contents	iii
List of Figures	i×
List of Tables	xii
List of important symbols	xii.
CHAPTER(1) : INTRODUCTION	
1.1 General overview	1
1.2 Thesis objectives	3
1.3 Thesis outline	4
CHAPTER(2) : VARIABLE STRUCTURE SYSTEMS	
2.1 Introduction	5
2.2 Sliding mode	10
2.3 Reachabiliy	11
2.4 Problem formulation	13
2.5 Large-scale system design	18
2.6 Applications	19
2.7 Concluding Remarks	21

CHAPTER(3): ANALYSIS AND DESIGN OF SINGLE-INPUT SINGLE-OUTPUT SYSTEM

3.1	Introduction	22
3.2	Reachability conditions	
	for a sliding mode	22
3.3	Analysis and design of SISO VSS [continuous]	25
3.4	Stability conditions of a sliding mode	29
3.5	The invariance conditions of VSS	32
	3.5.1 The invariance condition to disturbance	32
	3.5.2 The invariance condition to parameteric variation	34
3.6	Design techniques [continuous systems]	36
	3.6.1 Conventional design algorithm	37
	3.6.2 Example (3.1)	37
	3.6.3 proposed design algorithm	43
	3.6.4 Example (3.2)	44
3.7	Sensitivity analysis of VSS	49
	3.7.1 Compensating the parameter variations	49
	3.7.2 Minimum preliminary response time	50

3.7.3 Optimal design algorithm	53
3.7.4 Example (3.3)	53
3.8 Analysis and design	
of SISO VSS [discrete]	58
3.8.1 Reachability conditions for a sliding mode	58
3.8.2 Stability conditions for a sliding mode	60
3.9 Design techniques [discrete systems]	
3.9.1 Proposed design algorithm	63
3.9.2 Example (3.4)	64
3.10 Alternative analysis	
for reachability conditions	උප
3.10.1 Modified design algorithm	70
3.10.2 Example (3.5)	70
3.11 Concluding Remarks	76
CHAPTER(4): ANALYSIS AND DESIGN OF MULTI-INPUT MULTI-OUTPUT SYSTEM	
4.1 Introduction	77
4.2 Analysis of MIMO VSS [direct design]	78
4.2.1 System dynamics during sliding mode	81

		Conventicnal Lechnique	design	82
		Conventional algorithm	design	83
	4.2.4 E	Example (4.1)		83
	4.2.5 F	roposed desi	gn	
	t	echni que		87
		Proposed desi lgorithm	gn	90
	4.2.7 E	Example (4.2)		90
4.3	Decentr	alized contr	ol	95
		nalysis of M decentralize		96
	4.3.2 D	esign techni	que	98
	4.3.3 D	ecentralized lgorithm	design	99
	4.3.4 E	xample (4.3)		99
4.4	Analysi.	s and design		
	for MIM	O [discrete]		104
		nalysis of M direct desig		104
	4.4.2 R	eachability (condition	105
	4.4.3 D	irect design	algorithm	108
	4.4.4 E	xample (4.4)		109
4.5	Decentra	alized contro	ol .	113
		nalysis of <i>H</i> decentralized		114

4.5.2 Decentralized design algorithm	116
4.5.3 Example (4.5)	116
4.6 Concluding Remarks	123
CHAPTERCS) : APPLICATION OF VARIABLE STRUCTURE CONTROL SYSTEMS	
5.1 Introduction	125
5.2 Real time application	126
5.2.1 System's components	126
5.2.2 Process identification	127
5.2.3 State space model	131
5.2.4 Discrete model	132
5.2.5 Selection of sampling period	132
5.2.6 Estimator design	133
5.2.7 Estimator Equations	134
5.3 Concluding Remarks	142
CHAPTER(6): CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK	
6.1 General conclusions	143
6.2 Recommendations for future work	146
REFERENCES	147

APPENDIXCAD : ON LINE SOFTWARE

DRIVING PROGRAM 152

APPENDIX(B) : COMPUTER AIDED DESIGN

PACKAGE OF VSS 154

12

List of figures

CHAP	TER(2)

Fig.(2.	1) VS second order system	6
Fig.(2.	2) The variable structure system	7
Fig.(2. [low fr	3) Closed loop trajectories equency of switching!	8
Fig.(2.	4) Closed loop trajectories	8
Fig.(2. (high f	5) A sliding mode requency of switching]	9
Fig.(2.	6) Demonstrating the sliding mode	10
CHAPTER(3)		
Fig.(3.	1) Reachability conditions	25
Fig.C3.	2) Phase plane of Example (3.1)	39
Fig.C3.	3) Time response of Example (3.1)	40
Fig.(3.	4) Switching function of Example (3.1)	41
Fig.(3.5	D) Phase plane of Example (3.2)	45
Fig. (3.6	5) Time response of Example (3.2)	46
Fig.C3.7	7) Switching function of Example (3.2)	47
Fig. (3.8	3) Time response of Example (3.3)	##

0

		Example (3.3)	56
	Fig. (3.10)	Time response of Example (3.4) for X1	65
	Fig. (3.11)	Time response of Example (3.4) for X2	66
	Fig. (3.12)	Switching function of Example (3.4)	67
	Fig. (3.13)	Time response of Example (3.5) for X1	72
	Fig.(3.14)	Time response of Example (3.5) for X2	73
	Fig. (3.15)	Switching function of Example (3.5)	74
CHAPTERC 4	2		
	Fig.(4.1)	Time response of Example (4.1)	85
	Fig.(4.2)	Phase plane trajectories of Example (4.2)	92
	Fig.(4.3)	Time response of Example (4.2)	93
	Fig. (4.4)	Switching function Of Example (4.2)	94
	Fig. (4.5)	Two level controller	97
	Fig.(4.6)	Time response of Example (4.3)	108
	Fig.(4.7)	Time response of Example (4.4) for X1	11(
	Fig.(4.8)	Time response of Frample (4 4) for X2	111

Fig. (4.9	D Switching function of Example (4.4)	112
Fig. (4.1	O) Time response of Example (4.5) for X1	119
Fig. (4.1	1) Time response of Example (4.5) for X2	120
Fig. (4.1	2) Time response of Example (4.5) for X3	121
Fig. (4.1	3) Time response of Example (4.5) for X4	122
CHAPTER(5)		
Fig. (5.1) Digital control system	126
Fig. (5. 2	D Reaction curve	128
Fig. (5.3	B) Real time reaction curve	130
Fig. (5.4	D Complete block diagram for discrete system	134
Fig. (5.5	5)-a Real time phase plane trajectory	135
Fig.(5.5	5)-b On-line system flow chart	136
Fig.(5.5) Proportional controller response	137
Fig. (5.7	7) VSS controller response	138
Fig. (5.8	3) VSS controller + integral action response	139
Fig. (5. 9	Proportional controller + disturbance	140
Fig.(5.1	O) VSS controller + disturbance	141