Bb 122-0

مر کے کے

INCIDENCE AND AETIOLOGICAL CLASSIFICATION OF SYSTOLIC MURMUR IN FIFTY ASYMPTOMATIC CHILDREN.

THESIS

Submitted in partial fulfilment for the master degree in cardialogy.

BY

LAILA IBRAHIM SHALABY. M,B,B.ch., Diploma of pediatrics.

SUPERVISORS

Prof. Dr. MOHAMED ATTIA.

professor of Cardiology and bead of Cardiology
Department - Ain Shams University.

Prof Dr. HASSUNA SABAA

Director of Imbaba Institute for Cardiothoracic Surgery.

Assistant Prof GALAL M. ZIADY.

Assistant professor of Cardiology. Ain Shams University.

11982

616.12 2. I. For of Maticine Vin. of Air Shoms.

1979

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and cordial thanks to Professor Mohamed Attia, Head of the Department of Cerdiclogy, Ain Shams University, for the suggestion and planning of this work as well as for his helpfull supervision and kind guidance given throughout the course of this work.

I am also greatly indebted to Professor Hassuna Sabaa Director of Imbaba Institute for Cardiothoracic Surgery, for his generous nelp and kind encouragement.

I am grateful to Dr. Galal M. Ziedy, Assistant Professor of Cardiology, Ain Shame University, for his helpful ideas and genuine assistance, and to all my colleagues in Imbaba Institute for Cardiothoracio Surgery and in the Cardiology Department of Ain Shame University for their constant cooperation.

Finally, I would like to express my warmest gratitude to my husband Mr. Moustafe Sami of Al-Ahram, without whose patience, understanding and encouragement, the completion of this work would not have been an easy task.

It is a source of pride for me that Mr. Mohamed Youssef, Head of the Department of Photography in Al-Ahram Newspaper, has undertaken to prepare all the plates in this work, evidence of his master skill and splendid graphic art.

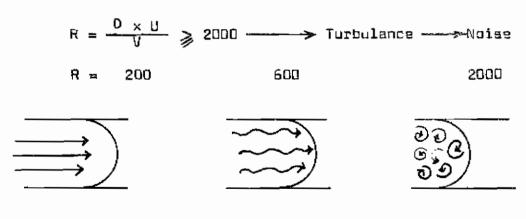
Evaluation of a systolic murmur is one of the most commone tasks which confronts the physican who is conducting a physical examination especially with an asymptomatic child.

Misinterpretation of innocent murmur may lead to anxiety on the part of both the physican and the patient & his family; through a prolonged period of unnecessary restriction of physical activity and perhaps to cardiac neurosis.

In the past, errors in diagnosis have led to exclusion of healthy people from athletic activities, flying and military service.

The proper interpretation of such murmur is especially important in children with regard to the necessity of use of prophylactic pencillin for rheumatic fever and bacterial endocarditis.

On the other hand and after using many recent techniques e.g. phonocardiography and Echocardiography also with the helpfull aid of cardiac c theterization many cases proved to be organic in origin e.g. mild pulmorary stemosis, ventricular septal defect, Aortic stemosis, or subsortic muscular hypertrophy.


Then as systolic murmur in an asymptomatic child may be compatible with perfect health or it may indicate organic heart disease; our aim in this work is to detect the aetiological causes of systolic murmurs discovered on routine medical examination in young children— at school age— and to identify the correct way to settle the proper diagnosis in a case like that.

REVIEW OF LITRATURE

x The Probable Mechanism of the Production of Murmurs:

Turbulance Theory

for many years the most widely accepted theory of the cause of murmurs was that due to turbulance in the blood flow. This was based on the work of Osborne Reynolds, who described fluid flow as a function of the velocity, tube diameter and viscosity— a concept which would indicate the development of turbulant flow from previously Laminar flow. If the result—ant value (termed by Reynold's number) exceeded 2000, turbulance was present (1)

(Fig. 1)

x The derivation of the Reynolds number (R) is shown where(D) is the diameter of the channel, (U) is the free stream velocity and (V) is the kinematic viscosity.

The change from laminar flow through the transitional zone to fully turbulant flow is shown.

In this the fluid particles move randomly in direction and velocity.

Once turbulant, the flow does not become more randome or turbulant(1)

Secause the Reynolds number of blood being pulsed through a stenosis that produced a murmur wasgreater than 2000, It was assumed that the development of turbulance produceds the noise.

This theory was also applicable to conditions in which there was no stenosis such as anaemia or high cardiac output states and this constituted a strong reason for it's widespread acceptance.

There is, however good reason for doubting that turbulance is a cause of murmure. Recent discoveries in the field of zero-dynamic sound have indicated that turbulance is an ineffectent generator of noise at low velocities of flow. (2)

It becomes an effecient generator of sound, however, if the velocity of flow approaches the speed of sound in the medium. A good example is the noise produced by jet engines. This is redicted a great distance from it's source but one must rislize that the velocity of air flow equals or exceeds the Mach number.

When one realizes that the speed of sound in the blood is of the order of 150,000 m/second it is difficult to accept turbulance as a cause of murmurs: since valocities of flow of this magnitude are never approached. (3)

If the observer moves closer to the source of turbulance then it is true that appreciable noise is generated at lower

velocities, however, even within a distance of one wavelength there would be no significant sound caused by turbulance unless the velocities exceed what we know to exist in the cardiovascular system.

Turbulance may also be rejected as a cause of murmurs on the basis of MacDonald's finding that the critical Reynolds number of pulsating blood in the aorta and great vessels is as law as 1000 (4)

As the velocity of ejection through a normal valve produces a Reynolds number greater than 1000 throughout most of the duration of the systole then one can reasonably expect all of us to manifest pansystolic murmur.

Another reason for the weakness of the turbulance theory of murmurs relates to the defenit pitch or frequency that certain murmurs manifest. (1)

It has been shown that noise due to turbulance has a very broad frequency spectrum and $\mathbf{1}^f$ murmurs were due to this, then they would be essentially of all the same pitch.

Cavitation Theory:

It is well known that when a liquid is forced through an orific at a velocity sufficient to cause a local pressure drop below the vapour pressure of the liquid, bubbles are very rapidly formed and collapses as they move down-stream, producing an intense crackling noise. The frequency of this type of noise in general is higher than what we know to exist in the cardiovascular system and it is radiated a great distance from its source.

In a long series of experiments using both steady and pulsatile flow with appropriate modies, we were able to produce cavitation in blood, But it was found that the driving pressure required to force blood through the narrow crifice which would produce this phenomenon was greater than 350 mmHg for these reserves capitation theory can not be accepted as a cause of murmura such as are detected and interpreted clinically. (5).

Vortex Sheeding Theory:

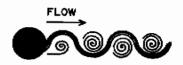
It is known that when an abstacle is present in the path of any fluid, vortices are inset along its edge. If the obstacle is a smooth wire or cylinder, a clear tone is produced. Fig. 3 (6).

The sound produced by type of flow is described as an Aeolion tone. In this particular type of flow, the pressure oscillation
sesociated with vortex shedding are significantly greater than
those experienced with turbulance. In this particular type of
flow, the pressure oscillation of acoustical frequency are of the
order of 2 to 8 mm Hg. The fact that 1 mm Hg represents may dynes

per cm² of acoustical energy makes it easier to accept this more effecient form of fluid flow as a cause of murmurs. (1)

It should be mentioned that these pressure oscillations are generated in the fluid itself. A resonant vibration of the obstacle or the vessel wall is not required for oscillations significant intensity to be generated.

This is emphasized because several investigators have sought to explain murmure as being due to the vibration of a vessel wall or a valve (7)


Several characteristics of this type offlow are worthy of description. In the simplest form of vortex sheeding, that is, in the production of an Aeolian tone— vortices are shed on either side of the cylinder.On listening perpondicular to the flow, a lift oscillation is found to occur with the shedding of two vortices. However if one listens parallel to the flow a drag oscillation occurs with the shedding of each vortex.

In general, the amplitude of the drag oscillation is one ninth the strength of that of the lift oscillation. (1).

In other words, the frequency and strength of the sound perceived is dependent in part upon the position of the listener in relation to the flow.

Another characteristic of vortex shedding flows is that the frequency of the noise so produced increases in direct proportion to the velocity. A linear relationship has been described by stroubal and has been reconfirmed many times. (1)

On the basis of the theoretical considerations shown in the figure (4) one would expect a slight stemosis to produce a relatively high frequency murmur a more severe stemosis one of lower frequency, and a maximal stemosis a murmur which is once again high in frequency.

Lift Amplitude

Drog Amplitude

Fig. (2)

TURBULENCE IN STREAMS OF FLUID

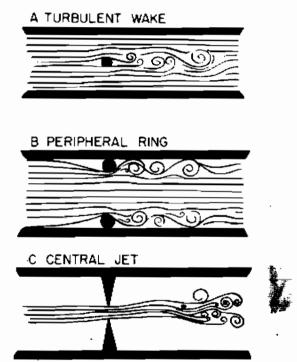


Fig. (3) A cylindrical obstruction in a stream of fluid causes eddy currents downstream which may produce sounds corresponding to Aeolin tones vibrations of similar origin may be produced by circular obstruction around the periphery of a pipe. A smaller orific produces central jet.

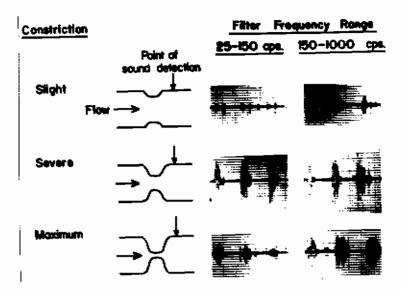


Fig. (4) The changing contribution of high frequency component of the murmur produced by increasing constriction of a dog!a ascending morta.

The Elema phonocardiagraphy was used to discriminate the relative intensities of high and law frequencies. (From Amer. J. Mex. 27:360,1959).