SEROPREVALENCE OF HEPATITIS C VIRUS AMONG RURAL AND URBAN PREGNANT WOMEN

THESIS

Submitted in Partial Fulfilment for Requirement of the Master Degree in Obstetrics Gynecology

BY

Mona El-Sayd Mohamed Hassan

M.B.B.Ch.

Mansoura University, 1984

SUPERVISED BY

Professor Dr.

Mohamed Nagi El-Makhzangy

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr.

Mohamed Ali Mohamed Ibrahim

Assistant Professor of Obstetrics and Gynecology

Faculty of Medicine - Ain Shams University.

Professor Dr.

Farha Abdul Aziz El-Shennawy

Professor of Clinical Pathology

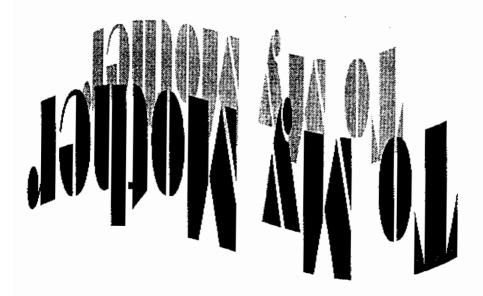
Faculty of Medicine - Mansoura University

Faculty of Medicine Ain Shams University 1996

قالوا سبحنك لا علم لنا الا ما علمتنا انك انت العليم الحكيم صدق الله العظيم

سوره البقرا

آله ۲۲


ACKNOWLEDGEMENT

I wish to express my sincere thanks to all those who made the completion of this work possible.

I am grateful to professor Mohamed Nagi Ei Makhzangy, professor of Obstetrics and Gynecology, Ain Shams University for his invaluable advise and constant supervision

I would like to express my sincere gratitude to Dr. Mohamed Ali Mohamed Ibrahim, assistant professor of Obstetrics and Gynecology, Ain Shams University for his great help and guidance

I would like to thank professor Farha Abdulaziz El Shennawy, professor of Clinical Pathology, Mansura University for her continued supervision and encouragement

LIST OF CONTENTS

THE VIEW IS	
Subject	Page
Introduction and Aim of the work	1-2
Part I- Review of the literature	
1- Viral hepatitis	3-69
Historical aspect	3-17 2
Pathology	3
Clinical features	3-5
Sequelae	6-11
-	11-15
Investigation	16-17
2- Hepatitis A virus	18-21
3- Hepatitis B virus	22-28
4- Hepatitis D virus	29-32
5- Hepatitis E virus	33-35
6- Hepatitis C virus	36-63
7- Pregnancy and viral henatitie	64-69
Part II : Patients and methods	
Part III: Results	70-77
Part IV: Dissussion	78-112
	113-123
Part V :Summary and conclusion Part VI : References	124-125
	126-159
Part VII: Arabic summary	1-2

LIST OF TABLES AND FIGURES

Figures

Fig	nure No	<u>Page</u>
1	Diagram of the hepatitis A virus	19
2	Diagram of the hepatitis B virus	23
3	Diagram of the hepatitis D virus	30
4	Diagram of the hepatitis E virus	34
5	Diagram of the hepatitis C virus	37
6	Odds ratios of different HCV risk	108
	factors in all cases	
7	Odds ratios of different HCV risk	109
	factors in rural area	
8	Odds ratios of different HCV risk	110
	factors in urban area	
	Tables	
Ta	ble No	Page
1	Ralationship between HCV antibody test	79
	reactivity and residency in all tested women	
2	HCV antibody test reactivity in pregnant	80
	versus non pregnant women	
3	Relationship between HCV antibody test	81
	reactivity and gravidity among all cases	
4	Relationship between HCV antibody test	82
	reactivity and blood transfusion among all cases	
5	Relationship between HCV antibody test	83
	reactivity and Ob./Gyn. surgery in all cases	
6	Relationship between HCV antibody test	84
	reactivity and previous general surgery in all cases	
7	Relationship between HCV antibody test	85
	reactivity and history suggestive of hepatitis	
	among all cases	
8	Relationship between HCV antibody test	86

	pregnant women in rural area	
20	Relationship between HCV antibody test	98
	reactivity and frequent intravenous (I.V.) drug use	among
	pregnant women in urban area	_
21	Results of logistic regression of prevalence	99
	of HCV antibody among all pregnant women	
22	Results of logistic regression of prevalence	100
	of HCV antibody (all variable in rural area)	
23	Results of logistic regression of prevalence	101
	of HCV antibody (all variable in urban area)	
24	Percent of grouped cases correctly predicted	102
	for all cases	
25	Percent of grouped cases correctly predicted	103
23	in rural area	105
26	Percent of grouped cases correctly predicted	104
20	in urban area	104
27	Standerdized canonical discriminant function	105
21	coefficients disrminating HCV infection	100
20	•	106
28	Unstanderdized canonical discriminant function	100
	coefficients disrminating HCV infection	105
29	Percent of grouped cases correctly classified from	107
	the previous discriminant analysis	

	reactivity and intravenous (I.V) drug use	
	among all cases	
9	Relationship between HCV antibody test	87
	reactivity and gravidity among pregnant	
	women in rural area	
10	Relationship between HCV antibody test	88
	reactivity and gravidity among pregnant women	
	in rural area	
11	Relationship between HCV antibody test	89
	reactivity and previous history of blood transfusion	
	among pregnan t women in rural area	
12	Relationship between HCV antibody test	90
	reactivity and previous history of blood	
	transfusion among pregnant women in urban area	
13	Relationship between HCV antibody test	91
	reactivity and previous OB./ Gyn. surgery among	
	pregnant women in rural area.	
14	Relationship between HCV antibody test	92
- '	and previous Ob./Gyn. surgery pregnant	
	women in urban area	
15	Relationship between HCV antibody test	93
	reactivity and previous general surgery among	
	pregnant women in rual area	
16	Relationship between HCV antibody test	94
10	reactivity and previous general surgery among pregnant	٠,
	women in urban area	
17	Relationship between HCV antibody test	95
.,	reactivity and past history suggestive of hepatitis among	
	pregnant women in rural area	
18	Relationship between HCV antibody test	96
10	reactivity and past history suggestive of hepatitis among	
	pregnant women in urban area	5
	program women in uroun area	
19	Relationship between HCV antibody test	97
	reactivity and frequent intravenous (I.V.) drug use am	ong
	, , ,	_

;

Introduction Introduction Sim of the Work

<u>Introduction</u> and Aim of the Work

A viral agent that is neither hepatitis A virus nor hepatitis B virus has been recognized as the major cause of community acquird viral hepatitis (stevens, et al., 1990). Recently the genome of non-A, non-B hepatitis designated hepatitis C virus(HCV) was moleculary cloned and identified as a positive strand RNA molecule (Kuo et al., 1989).

An assay for circulating viral antibodies to HCV was developed using an antigen purified from recombinant yeast clones derived from the genome and result obtained with this assay suggested that antibode to HCV could be used as a marker of HCV infection (Stevens, et al., 1990)

Since that time, the assay has become commercially available and published reports have described anti- HCV antibody seroprevalences in a variety of populations at both high and low risk for infection, most studies using the epidemiologic characteristics of hepatitis B virus infection as their model for risk predictions.

As hepatitis B virus "HBV "materno - fetal transmission was describid in the pre natal period and measures for immunoprophylaxis of the at - risk newborn proved effective

(Beasley, et al., 1983), concerns have been raised regarding the HCV vertical transmission (Thaler, 1991).

The aim of the work is to contribute in delighting the prevalence of HCV among both urban and rural pregnant women in some localities in Egypt, as large - scale evalutions of the magnitude of vertical transmissibility as a public health issue will evantually depend on studies first establishing the actual risk of such occurences on the basis of seroprevalence data in the population as a whole. We also, examined the value of risk factors identification for predicting HCV anti-body positivity among pregnant women.

I iterateure Ot Mainterateure

Viral hepatitis

Historical Aspect:

The first reference to epidemic jaundice has been ascribed to Hippocrates. The earliest record in Western Europe in a letter written in 751 AD by Pope Zacharias to St. Boniface, Archbishop of Mainz. Since then there have been numerous accounts of epidemics, particularly during wars. Hepatitis was a problem in the Franco- Prussian War, the American Civil War and World War I. In World War II huge epidemics occurred, particularly in the Middle East and Italy (Zuckerman, 1977).

In the last few years, important research developments have clarified the molecular biology, diagnosis, epidemiology and clinical features of five distinct hepatotropic viruses, that is A, B, C, D, and E (Gregorio et al, 1994).

Pathology:

I- Hepatic changes:

All forms of viral hepatitis have basic pathology. The essential lesion is an acute inflammation of the entire liver (Dible et al. 1943).

The typical morphologic lesions of hepatitis A, B, C, D and E are often similar and consist of panlobular infiltration with mononuclear cells, hepatic cell necrosis, hyperplasia of Kupffer cells, and variable degrees of cholestasis.

Hepatic cell regeneration is present, as evidenced by numerous mitotic figures, multinucleated cells, and "rosette" or "pseudoacinar" formation. The mononuclear infiltration consists primarily of small lymphocytes although plasma cells and eosinophils are accasionally seen. Liver cell damage

consists of hepatic cell degenration and necrosis, ballooning of cells, and acidophilic degeneration of hepatocytes forming socalled (Councilman-like bodies). Large hepatocytes with a ground glass appearance of the cytoplasm may be seen in chronic but not in acute hepatitis B virus (HBV) infection. These cells have been shown to contain HB, Ag and can be identified histochemically with orcein or aldehyde fuchsin. In viral hepatitis, the reticulin framwork is uncomplicated preserved in hepatitis C, the histologic lesion is often remarkable for a relative paucity of inflammation a marked increase in activation of sinusoidal lining cells, the presence of fat, and occasionally, bile duct lesions in which biliary epithelial cells appear to be piled up without interruption of the basement membrane. Occasionally microvesicular steatosis occurs in hepatitis D. In hepatitis E, a common histologic feature is marked cholestasis. A cholestatic variant of slowly resolving acute hepatitis A also has been described. (Dienstag. and Isselbacker, 1994).

Confluent bridging hepatic necrosis: (Koff, 1993)

This term was suggested by an international group of hepatologists (Bianchi, et al, 1971) to designate zonal necrosis affecting extensive groups of adjacent hepatocytes in contrast to the usual spotty, focal, random distribution of necrosis in typical viral hepatitis. When hepatocellular necrosis or a necroinflammatory process involves contiguous groups of hepatocytes that connect recognizable anatomic structures this confluent lesion appears to bridge these structures and the term bridging necrosis is often used.

Patterns of bridging: the importance of bridging necrosis depends in part on the location as well as the extent of the injury.

A-Portal to portal bridging: preportal hepatitis increase the chance that random sections across hepatic lobules produce apparent confluence of adjecent portal tracts. The meaning of