

INVESTIGATING THE EFFICIENCY OF USING THE CARBON FIBER POLYMER ON BEAM –COLUMN CONNECTION

By

Mahmoud Mohamdean Youssef Eldeeb

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURE ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

INVESTIGATING THE EFFICIENCY OF USING THE CARBON FIBER POLYMER ON BEAM –COLUMN CONNECTION

By Mahmoud Mohamdean Youssef Eldeeb

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURE ENGINEERING

Under the Supervision of

Prof. Dr. Adel Yahia Akl

Professor of Structural Analysis and
Mechanics
Faculty of Engineering, Cairo University

Dr. Kamal Ghamery Metwally

Assistant Professor , Civil Engineering
Department
Faculty of Engineering, Bani-sweif University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

INVESTIGATING THE EFFICIENCY OF USING THE CARBON FIBER POLYMER ON BEAM –COLUMN CONNECTION

Mahmoud Mohamdean Youssef Eldeeb

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

STRUCTURE ENGINEERING

Approved by the Examining Committee

Prof. Dr. Adel Yahia Akl

Professor of Structural Analysis and Mechanics

Faculty of Engineering, Cairo University

Prof. Dr. Walled Abd-Elateif attiea

Professor of Structural Analysis and Mechanics

Faculty of Engineering, Cairo University

Prof. Dr. Osman El-Said Shalan

Professor of Structural Analysis and Mechanics

Faculty of Engineering, El-Zagazig University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer's Name: Mahmoud Mohamdean Youssef Eldeeb

Date of Birth: 01/01/1990 **Nationality:** Egyptian

E-mail: Mahm_eldeeb@yahoo.com

Phone: +20 - 0100073976

Address: New Damietta –Dameitta

Registration Date:1/03/2012Awarding Date:..../..../.....Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Adel YahiaAkl

Associate Prof. Kamal Ghamery Metwally

Examiners:

Prof. Adel Yahia Akl (Faculty of Engineering, Cairo University) Prof. Walled Abd-Elateif El attiea (Faculty of Engineering,

Cairo University.

Prof. Osman El-Said Shalan (Faculty of Engineering, El-Zigzag

University)

Associate Prof. Kamal Ghamry Metwally (Faculty of

Engineering, Bani-Sweif University)

Title of Thesis:

Investigating the efficiency of using the Carbon Fiber Polymer on beam-column connection

Key Words:

CRFP sheet, Beam-column connection, ANSYS Model, Deformation Efficiency, Ductility, Brittle, Capacity.

Summary:

Earth quakes (EQ) represent one of the most important natural factors which affect buildings. EQ result from the movement in earth layers, which have source of power that affect the building. Most EQ effects on buildings depend on the distance of the building from the source of EQ energy, so we have to design buildings to resist this force by using shear wall , cores or framings but some of old buildings doesn't structure element to resist this force , design in pervious codes , didn't consider that 4 storey buildings need structure element to resist EQ force so, we will study The behavior of beam column connections without CFRP and with CFRP on concentrated load at free end of cantilever beam is investigated in this thesis, we focus on developing best recommendations for using CFRP in retrofit beam- column connection. In addition to complement the published data, finite element model using the computer package ANSYS was used. The additional beam-column connections in this study are classified in 4-Groups (A,B,C,D) depending on $\%A_{sb}$ bottom (0.025%-1%) ,each group will classified from $\%A_s$ top (0.039%-2.45%) ,we investigate the influence of boundary condition, columns as hinged supports finally, we concluded the efficiency of using CFRP sheet if its improve or decrease efficiency of beam column connection depending on $\%A_s$ on beam .

Acknowledgments

I would like to express my sincere gratitude to my advisors **Prof. Dr. Adel Yahia Akl** and **Dr. Kamal Ghamry Metwally** for their guidance, support, encouragement, valuable discussions, and review during the course of this work, and great efforts to accomplish the thesis objectives.

I wish also to gratitude to my father, mother, my brothers, sister and all my friends (Magdy abdsamid, Dr.Diaa Ahmadean, Mohamed fawzy,Ahmed samih,Eng.yasser tosson) who are always behind me for the success, special thanks to **my fiancée** who support me in all time. I would not have achieved this work without their help and participation.

Dedication

To my parents, my dear brothers, sisters, my fiancée and my friends with love

ACKNOWLEDGMENTS	l
DEDICATION	II
TABLE OF CONTENTS	II
LIST OF TABLES	X
LIST OF FIGURES	XI
ABSTRACT	
CHAPTER 1 : INTRODUCTION	
1.1. Introduction	1
1.2. Problem statement	1
1.3. Scope of research.	1
1.4. Organization of thesis	1
CHAPTER 2 : LITERATURE REVIEW	6
2.1. Introduction	1
2.1.1.FRP material	1
2.1.1.A.Carbon fibers	3
2.1.1.B.Glass fibers	4
2.1.1.C. Aramid fibers	4
2.2. Constituent materials of fiber reinforced polymers systems	6
2.3. FRP systems	7
2.4. FRP strength structure history	7
2.5. FRP strengthening techniques	7
2.5.1. FRP advantages	8
2.5.2. FRP disadvantages	8
2.6. Ductility	9
2.6.1. Ductile Failure	9
2.6.2. Brittle Failures	9
2.7. Papers Analytical	10
2.8. Papers Experimental work	
2.9. Summary of my results	13

CHAPTER 3: FINITE ELEMENT MODELING	14
3.1. Introduction	14
3.2. Element types	
3.2.1. Concrete element model.	
3.2.2. CFRP shell element model.	
3.2.3. Steel reinforcement element model.	
3.3. Nonlinear finite element	17
3.4. Material properties.	18
3.4.1. Material properties for concrete.	
3.4.2. Material properties for reinforcement plate	
3.5. Real constants for element models	
3.6. Modeling methodology.	
3.6.1. Meshing of the analyzed beams	
3.6.2. Loads and boundary conditions	
3.6.4. Crushing and crack pattern	
CHAPTER 4: ANALYSIS AND RESULTS	28
4.1. Introduction	28
4.2.Description of the analyzed beam column connection	28
4.2.1.Model (1): Beam- column connection without CFRP	28
4.2.2. Model (2): Beam- column connection with CFRP thickness =0.285m	.28
4.3. Material properties.	28
4.3.1. For analyzed cantilever beam column connection without CFRP	29
4.3.2. For analyzed cantilever beam column connection	29
4.4. Investigated parameters of the analyzed beam- column connection	31
4.5. Results and discussion	31
4.5.1. Beam column connection without CFRP	31
4.5.1.1. Crack patterns.	31
4.5.1.2. Cracking and failure loads	33
4.5.1.3. Deflection at failure	
4.5.1.4. Stress –Strain.	
4.6. Investigated parameters of the analyzed beam-column connection for	
secondary cases	42
4.6.1. Effect of using CFRP sheets for beam connection section under or	
Over RFT.	
4.6.1.1. Crack patterns	
4.6.1.2. Max Deflection at failure	
4.6.1.3.Load deflection curves 4.6.1.4. Deflection at failure	
4.6.1.5. Model of failure	
4.0.1.3. MIOUCI OI Tallule	04

4.6.1.6. Failure load and CFRP stress.	73
4.6.1.7. CFRP stress and % As top steel RFT	75
4.6.1.8. Failure load and % top steel RFT	
4.6.1.9. Improvement of CFRP &% As top steel RFT in section	79
CHAPTER 5 : ANALYSIS OF BIG MODEL	80
5.1. Introduction	80
5.2.Description of analyzed frame building (4 stories)	
5.3. Material properties of frame building.	82
5.3.1. For analyzed frame building without CFRP.	82
5.3.2. For analyzed frame building with CFRP	82
5.4. Description of loads and calculating lateral loads	82
5.4.1. Gravity loads	83
5.4.2. Lateral loads	83
5.4.3. Calculations of loads	83
5.4.3.1 Calculations gravity loads	83
5.4.3.2 Calculations Earth quake loads	86
5.5. Results and Discussions	86
5.5.1. Storey building without CFRP and with CFRP	86
5.5.1.1. Deformation shape building without CFRP for comb	ination
(0.9DL+EQ)	86
5.5.1.2. Deformation shape building with for combination (0.9DL+SX)	87
CHAPTER 6 : CONCLUSIONS	90
6.1. Summary	90
6.2. Conclusions	
6.2.1. General	91
6.2.2. Proposed design recommendations	
6.3. RECOMMENDATIONS FOR FUTURE RESEARCHES	91
REFERENCES	92

List of Tables

Table 2.1: Typical Mechanical Properties for Fibers in Tension
Table 2.2: Specifications of constituent materials of fiber reinforced polymer6
Table 3.1: Material properties for concrete element
Table 3.2: Material properties for reinforcement bars
Table 4.1: Deflection of beam column connection without CFRP , CFRP33
Table 4.2: Deflection of beam column connection without CFRP, CFRP33
Table 4.3: Classified groups for %As top and bottom in cantilever beam connection
Table 4.4: Values of deflections at failure of the analyzed connection in group (A, B, C (and D
Table (5.1): Deformation and drift for each story for frame building for combination ((0.9DL+EQ)
Table (5.2): Deformation and drift for each story for frame building for combination ((0.9DL+Sx

List of Figures

Figure 2.1: various composite products for strengthening applications (a) woven glass (b) carbon sheet (c) CFRP plates
Figure 2.2:Concrete, Steel and FRP strength Reduction Factors
Figure 3.1: Solid65 element, ANSYS Theory
Figure 3.2: Solid65 stress output, ANSYS Theory
Figure 3.3: SHELL181 element, ANSYS Theory
Figure 3.4: Link180 3D Spar, ANSYS Theory17
Figure 3.5: Link180 stress output, ANSYS Theory
Figure 3.6: Uniaxial stress-strain curve for concrete model
Figure 3.7: Stress-strain curve for steel reinforcement
Figure 3.8: Reinforcement Details for beam-column connection
Figure 3.9: Meshing of a typical connection without CFRP
Figure 3.10: Element connectivity: (a) link elements (b) Concrete solid24
Figure 3.11: Meshing of a typical connection with CFRP
Figure 3.12: Loading and boundary conditions of a typical connection with hinged ends
Figure 3.13: Cracking sign of integration points in a concrete solid element

Figure 3.14: Typical cracking signs occurring in finite element model. (A) Cracks without CFRP; (B) Cracks with CFRP.	
Fig 4.1: Beam column connection without CFRP	
Fig 4.2: Beam column connection with CFRP.	29
Fig 4.3: Longitudinal steel, stripes steel for beam column connection	30
Fig 4.4: CFRP SHEET.	30
Fig 4.5: Cracks pattern of beam column connection without CFRP	32
Fig 4.6: Cracks pattern of beam column connection with CFRP	32
Fig 4.7: Analyzed beam column connection deflection with CFRP	34
Figure 4.8: Load deflection curves for connection without CFRP, CFRP	34
Figure 4.9: Max deflected shape at failure for analyzed connection without CFRP.	35
Figure 4.10:Max deflected shape at failure for analyzed connection with CFRP.	36
Fig 4.11: Stress-Strain curve for connection without CFRP, with CFRP	36
Figure 4.12: Stress in concrete for analyzed connection without CFRP	38
Figure 4.13: Strain in concrete for analyzed connection without CFRP	38
Figure 4.14: Stress in steel for analyzed connection without CFRP	39
Figure 4.15: Stress in concrete for analyzed connection with CFRP	39
Figure 4.16: Strain in concrete for analyzed connection with CFRP	39

Figure 4	4.17: Stress in steel for analyzed connection with CFRP
Figure 4	4.18: Stress in CFRP sheet for analyzed connection with CFRP
Figure 4	4.19: Stress in steel for analyzed connection with CFRP
Figure 4	4.20: Stress in CFRP sheet for analyzed connection with CFRP
Figure 4	4.21:Analysis of sections with compression reinforcement
_	4.22: Cracks for analyzed beam column connection without, with CFRP Group45-46
-	4.23: Cracks for analyzed beam column connection without, with CFRP Group
	4.24: Cracks for analyzed beam column connection without, with CFRP Group
_	4.25: Cracks for analyzed beam column connection without, with CFRP Group
_	4.26: Max deflection for analyzed beam column connection without, with CFRP (A))52
_	4.27: Max deflection for analyzed beam column connection without, with CFRP (B))53
Figure 4	4.28: load deflection curve for group (A) with and without CFRP55
Figure 4	4.29: Load deflection curve for group (B) with and without CFRP55
Figure 4	4.30: lo load deflection curve for group (C) with and without CFRP56
Figure 4	4.31: load deflection curve for group (D) with and without CFRP56

Figure 4.32: Deflection for analyzed beam column connection without, with CFRP Group (A)
Figure 4.33: Deflection for analyzed beam column connection without, with CFRP Group (B)
Figure 4.34: Deflection for analyzed beam column connection without, with CFRP Group (C)
Figure 4.35: Deflection for analyzed beam column connection without, with CFRP Group (D)
Figure 4.36: Nodal SX stresses of analyzed beam column connection without, with CFRP Group (A)
Figure 4.37: Nodal SX stresses of analyzed beam column connection without, with CFRP Group (B)
Figure 4.38: Nodal SX stresses of analyzed beam column connection without, with CFRP Group (C)
Figure 4.39: Nodal SX stresses of analyzed beam column connection without, with CFRP Group (D)
Figure 4.40: Failure load vs CFRP stress for group (A) with CFRP
Figure 4.41: Failure load vs CFRP stress for group (B) with CFRP73
Figure 4.42: Failure load vs CFRP stress for group (C) with CFRP74
Figure 4.43: Failure load vs CFRP stress for group (D) with CFRP74
Figure 4.44: CFRP stress vs As top for group (A) with CFRP75
Figure 4.45: CFRP stress vs As top for group (B) with CFRP75
Figure 4.46: CFRP stress vs As top for group (C) with CFRP76

Figure 4.47: CFRP stress vs As top for group (D) with CFRP76	
Figure 4.48: Failure load vs As top for group (A) without CFRP, with CFRP77	
Figure 4.49: Failure load vs As top for group (B) without CFRP, with CFRP77	
Figure 4.50: Failure load vs As top for group (A) without CFRP, with CFRP78	
Figure 4.51: Failure load vs As top for group (A) without CFRP, with CFRP78	
Figure 4.52: Failure load vs As top for group (A) without CFRP, with CFRP79	
Fig (5.1): Plan of building81	
Fig (5.2): Section for frame building81	
Figure (5.3): Deformation for frame building without CFRP	
Figure (5.4): Deformation for frame building with CFRP	
Figure (5.5): Deformation of frame building without CFRP for combination (0.9DL+Sx)	
Figure (5.6) Deformation of frame building with CFRP for combination (0.9DL+Sx)	