The use of Multiplex Ligation Dependent Probe Amplification (MLPA) in the detection of copy number variance of subtelomeric regions in idiopathic intellectual disability

Thesis

Submitted as Partial Fulfillment of Master Degree in Medical and Clinical Genetics

By

Rana Mahrous Ali Mahmoud

M.B.B.Ch
Human Cytogenetics
National Research Centre

Under Supervision of

Prof. Dr. Ezzat Sayed Elsobky

Professor of Medical and Clinical Genetics Faculty of Medicine- Ain Shams University

Prof. Dr. Mohamed Saad Zaghloul

Professor of Medical and Clinical Genetics Faculty of Medicine- Ain Shams University

Prof. Dr. Amal Mahmoud Mohamed

Professor of Human Cytogenetics Human Genetics & Genome Research Division National Research Centre

> Faculty of Medicine Ain Shams University 2016

- Tirst of all I thank Allah for his great mercy and help to complete this work.
- Words cannot express my deepest gratitude and appreciation to **Prof. Dr. Ezzat Sayed Elsobky** Professor of Medical and Clinical Genetics, Faculty of Medicine, Ain Shams University, for his excellent guidance, powerful support, supervision and help throughout the accomplishment of this study.
 - It is a great honor for me to take this opportunity to express my most deep respect and appreciation to Prof. Dr. Amal Mahmoud Mohamed, Professor of Human Genetics, National Research Center who has been there to guide me throughout my studies. I encountered many challenges during my research and Dr. Amal was always there to provide support and encouragement.
 - Prof. Dr. Mohamed Saad Zaghloul, Professor of Medical and Clinical Genetics, Faculty of Medicine, Ain Shams University for his support to get best out of this work.
 - Prof. Dr. Mona Totfy Essawi, professor of Medical Molecular Genetics, Human Genetics & Genome Research Division, National Research Centre for offering me generously her expensive time, great help, and kind encouragement

≥ I would like to express my deep gratitude to

- Prof. Dr. Mona Sabry Aglan, Professor of Clinical Genetics, Human Genetics & Genome Research Division, National Research Centre.
- Prof. Dr. Sayeda Ali Hamad, Professor of Human Cytogenetics, Human Genetics & Genome Research Division, National Research Centre.
- Prof. Dr. Solaf Mohamed Elsayed, Professor of Medical and Clinical Genetics, Faculty of Medicine, Ain Shams University.
- Assistant prof. Dr. Ola Mohamed Eid, Professor of Human cytogenetics, Human Genetics & Genome Research Division, National Research Centre.
- Dr. Heba Amin Hassan, Researcher of Medical Molecular Genetics, Human Genetics & Genome Research Division, National Research Centre.

Without their continuous guidance, support, encouragement and assistance, the accomplishment of this work wouldn't have been possible

Tinally, I can never forget to express the profound thanks and appreciation to my family, for their great effort and support offered in performing this work.

Rana Mahrous Ali Mahmoud

Contents

Subjects	Page
List of Abbreviations	I
• List of Tables	III
• List of Figures	V
• Introduction	1
Aim of the Work	4
• Review of literature	
- Chapter (1): Intellectual Disability	5
- Chapter (2): Subtelomeric Regions	32
- Chapter (3): Multiplex Ligation Depend	lant Probe
Amplification (MLPA)	39
Patients and Methods	45
• Results	61
• Discussion	94
• Summary	105
• Conclusion	112
Recommendations	113
• References	114
Arabic Summary	

List of Abbreviations

AAMR's	American Association on Mental	
	Retardation's	
ADHD	attention deficit disorder	
ADID	Autosomal dominant intellectual	
	disability	
CNVs	copy number variants	
CGH	comparative genomic hybridization	
CMA	Chromosomal microarray	
DNA	Deoxyribonucleic acid	
DSM-IV	Diagnostic and Statistical Manual of	
	Mental Disorders, 4th edition.	
FISH	Fluorescence in situ hybridization	
FMR1	fragile X mental retardation 1	
FXS	Fragile X mental retardation syndrome	
GDD	Global developmental delay	
ID	Intellectual disability	
IQ	intelligence quotient	
LSI	Locus Specific probe	
MAPH	multiplex amplifiable probe	
	hybridisation	
Mb	million base pairs	

•	T		
MCA	Multiple Congenital Anomalies		
MLPA	multiplex ligation dependent probe		
	amplification		
MODY	Maturity-onset diabetes of the young.		
NGS	Next generation sequencing		
PCR	polymerase chain reaction		
SNP	Single nucleotide polymorphism		
Srpt	Subtelomeric repeat		
STRP	Short tandem repeat polymorphisms		
TORCH	Toxoplasmosis, Other (syphilis,		
	varicella-zoster, parvovirus B19),		
	Rubella, Cytomegalovirus (CMV), and		
	Herpes infections.		
UCRs	Unbalanced the chromosomal		
	rearrangements		
XLID	X-linked intellectual disability		
YAC	Yeast artificial clones		

List of Tables

Table No	Title	Page
Table (1)	Recurrent copy number variants in the	18
	human genome and microdeletion	
	syndromes that cause, or predispose to,	
	intellectual disability or related disorders.	
Table (2)	Common Recognizable XLID Syndrome.	25
Table (3)	Comparison between multiplex ligation-	44
	dependent probe amplification (MLPA)	
	assay and other methods for the detection	
	of gene deletions/duplications.	
Table (4)	SALSA MLPA P070-B3 Subtelomeres	51
	Mix 2B probemix.	
Table (5)	Criteria of the 30 selected patients from	62
	the patients group	
Table (6)	Relevant findings in the history of	69
	patients group.	
Table (7)	Clinical features of the patients group.	72
Table (8)	IQ and severity of intellectual disability in	74
	the patients group.	
Table (9)	Characteristics of normal controls persons	76
	as regard sex, intellectual disability.	
Table (10)	Karyotype was normal for the patient	77
	group. Both the patient group and the	
	normal control persons group were	
	screened for subtelomeric copy number	

🕏 List of Tables 🗷

Table No	Title	Page
	variance by MLPA technique.	
Table (11)	Showing Characteristics of positive	85
	controls patients with provisional	
	diagnosis by karyotype.	

List of Figures

Figure No	Title	Page
Figure (1)	Theoretical model of mental retardation.	9
Figure (2)	Suggested initial genetic testing approach	30
	for the child with global developmental	
	delay or intellectual disability.	
Figure (3)	Examples of sequence organization in	34
	human subtelomeric DNA regions.	
Figure (4)	MLPA reaction.	42
Figure (5)	A: Electropherogram of a test sample	42
	(bottom) is compared to that of a reference	
	sample (top) showing a relative decrease of	
	three probes in the test sample (arrows).	
	B: Calculated probe ratios of the same test	
	sample (as displayed by Coffalyser.Net	
	software) after analysis of these two	
	samples: arranging probes by chromosomal	
	location shows a reduced copy number for	
	these three adjacent probes in the test	
	sample.	
Figure (6)	PAXgene blood DNA tubes and PAXgene	47
	blood DNA kit.	
Figure (7)	The PAXgene blood DNA procedure.	48
Figure (8)	Thermocycler program for the MLPA	54
	reaction.	

🕏 List of Figures 🗷

Figure No	Title	Page
Figure (9)	Relevant findings in the history of patients.	70
Figure (10)	Pedigree of Patient group showing	71
	similarly affected patients in the same	
	family and abortions.	
Figure (11)	Clinical features of the patient group.	73
Figure (12)	Pie chart showing the severity of	74
	intellectual disability in the cases group.	
Figure (13)	Histogram showing the frequency	75
	distribution of the IQ in the patients group.	
Figure (14)	Ratio chart of a females from the negative	79
	control group showing no subtelomeric	
	copy number variance.	
Figure (15)	Showing normal electrogram of a normal	80
	control female.	
Figure (16)	Ratio chart of a normal control male	81
	showing no subtelomeric copy number	
	variance.	
Figure (17)	Showing normal electrogram of a normal	82
	control male.	
Figure (18)	Ratio chart of 2 female patients from the	83
	patients group showing no subtelomeric	
	copy number variance.	
Figure (19)	Ratio chart of 2 male patients from the	84
	patients group showing no subtelomeric	
	copy number variance.	

🕏 List of Figures 🗷

Figure No	Title	Page
Figure (20)	Ratio chart of patient 1 from positive	86
	control with provisional diagnosis by	
	karyotype group.	
Figure (21)	Showing electrogram of a negative control	87
	patient (top) and electrogram of positive	
	control patient number one (bottom).	
Figure (22)	Case 1 subtelomeric FISH showing	88
	duplication of 4q subtelomere.	
Figure (23)	Ratio chart of patient 2 from positive	89
	control with provisional diagnosis by	
	karyotype group.	
Figure (24)	Showing electrogram of a normal control	90
	person (top) and electrogram of positive	
	control patient 2 (bottom).	
Figure (25)	Case 2 subtelomeric FISH showing	91
	duplication of 9p subtelomere.	
Figure (26)	Ratio chart of patient 3 from positive	92
	control with provisional diagnosis by	
	karyotype group.	
Figure (27)	Showing electrogram of a normal control	93
	person and electrogram of positive control	
	patient 3.	

Introduction

Intellectual disability, commonly referred to as mental retardation, is a frequent disorder associated with neurodevelopmental impairments in children (Shevell, 2008; García-Cazorla et al., 2009). The rate of intellectual disability prevalence is 1-3% depending on the population, criteria and sample methods applied (Moeschler and Shevell, 2006; Levy, 2011). In about 50% of the cases a specific causes can be identifed (Shapiro and Batshaw, 2011) whereas in 30-50% the etiology is unknown this latter group is called idiopathic (Mandal et al., 2009).

Unbalanced chromosomal rearrangements (UCRs) are identified in a considerable proportion of patients as the cause of the observed intellectual disability with detection rates varying widely from 5 to 30% as reported in the literature (*Roeleveld et al.*, 1997; Van Karnebeek et al., 2005). In particular, UCRs involving the distal ends or subtelomeric regions of chromosomes have been shown to be a significant cause of intellectual disability (*Flint and Knight*, 2003; Ravnan et al., 2006). Putatively based on the structural characteristics of chromosome ends and their role in the segregation process (*Linardopoulou et al.*, 2005). Subtelomeric copy number variance could be the cause of 3-6% of idiopathic intellectual disability

(Ledbetter and Martin, 2007). The prevalence of subtelomeric copy number variance has been variable among reported different studies ranging from as low as zero in mildly affected cases to 30% depending on the inclusion criteria selected, which included dysmorphic features, congenital malformations and family history of abortions (Kriek et al., 2004; Medina et al., 2014). Subtelomeric regions are gene-rich. Many genes are likely involoved in small deletion in these regions, thus consequences deleterious result. Many of subtelomeric deletions are now recognized as clinically recognizable phenotypes. These terminal regions stain lightly on karyotyping and deletion sizes are variable, which are often difficult to be detected by routine conventional examination (Battaglia, 2005).

Fluorescence in situ hybridization (FISH) was the first clinically used molecular cytogenetic technique (*Pinkel et al.*, 1988). Subtelomeric FISH probe is the most commonly used technique in detecting subtelomeric copy number variance (*Knight et al.*, 2000). They are commercially available and are fully tested by their manufacturer. Subtelomeric FISH probe is laborious, time-consuming and expensive procedures of using a complete set of subtelomeric FISH to analyze selected patients (*Albert et al.*, 2006). Multiplex ligation-dependent

probe amplification (MLPA) technique have overcomed this limitation (Azofeifa et al., 2000; Boggula et al., 2014).

The **Multiplex Ligation-Dependent Probe** Amplification (MLPA) method is a molecular genetic technique that identifies subtelomeric copy number variance, such as deletions or duplications (Torrado et al., 2009; Medina et al., 2014). It is a new, sensitive, economical and simple method for relative quantification of multiple nucleic acid sequences in a single reaction. Introduced by MRC-Holland in January 2002, its principle relatively simple, in which denatured genomic DNA after standard extraction is hybridized with a mixture of standardized probes. Each MLPA probe consists of two oligonucleotides, the two parts of each probe hybridized to adjacent target sequences and are ligated by an enzyme (thermostable ligase). All probe ligation products are amplified by PCR using only one primer pair. Since the amplification product of each probe has a unique length, they can therefore be separated by electrophoresis. The relative amounts of probe amplification products reflect the relative quantity of target sequences (Lam et al., 2006) (refer to details in review of literature, chapter 3).

Aim of the Work

The study aims to determine the prevalence, and characterization of copy number variance of subtelomeric regions through the multiplex ligation dependent probe amplification (MLPA) method in pediatric patients with idiopathic intellectual disability.