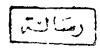
STUDIES ON THE EFFECT OF SALINITY ON SOME FRUIT PLANTS (APPLE AND OLIVE)


BY

RAWHEYA BEDIER MOHAMED ATTI

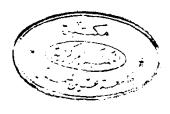
A thesis subbmitted in partial fulfiment

OF

THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

635.6 R. R

IN


AGRICULTURAL SCIENCE (POMOLOGY)

~8128

DEPARTMENT OF HORTICULTURE

FACULTY OF AGRICULTURE

AIN SHAMS UNIVERSITY

1994

STUDIES ON THE EFFECT OF SALINITY ON SOME FRUIT PLANTS (APPLE AND OLIVE)

BY

RAWHEYA BEDIER MOHAMED ATTIA

A thesis subbmitted in partial fulfiment OF

THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

AGRICULTURAL SCIENCE (POMOLOGY)

DEPARTMENT OF HORTICULTURE
FACULTY OF AGRICULTURE
AIN SHAMS UNIVERSITY

1994

EFFECT OF SALINITY ON SOME FRUIT PLANTS (APPLE AND OLIVE)

ΒY

RAWHEYA BEDIER MOHAMED ATTIA

B.Sc. Agric. (Horticulture), Ain Shams Univ., 1980.

M.Sc. Agric. (Fruit crops), Ain Shams Univ., 1986.

Under the Supervision of

Prof. Dr. Shawky E. Maximos.

Prof. of pomology, Fac. Agric. Ain Shams Univ.

Prof. Dr. Zeinab, H. Behairy.

Prof. of Pomology. Fac. Agric. Ain Shams Univ.

ABSTRACT

The present investigation was undertacken during the seasons 1989, 1990 and 1991 to study the durability of MM106 apple rootstock, Anna scion budded on MM106 and Agezi olive transplants to various irrigation salinity levels. The data reveal that the apple rootstock almost tolerated salt level up to 2000 ppm while the Agezi olive transplant tolerated almost salt concentration up to 4000 ppm. The Anna Scion budded on MM106 apple rootstock plants was the lowest in salt tolerance, due to the bud union flanks injury caused by increasing salts' concentrations.

Key words: Apple, Olive, Salinity, Vegetative growth, leaf and root mineral contents, anatomical structure, Salt tolerance.

APPROVAL SHEET

STUDIES ON THE EFFECT OF SALINITY ON SOME FRUIT PLANTS. (APPLE AND OLIVE)

BY

RAWHEYA BEDIER MOHAMED ATTIA

Date of examination $\Sigma / 2 / 1994$

ACKNOWLEDGEMENT

TO THE MEMORY

OF

LATE PROF. DR. AHEMED LABIE EL-TOMI.

Professor of Horticulture, Faculty of Agriculture, Ain-Shams University who was a genius man in the horticulture field. I dedicate this work to the spirit of the unforgettable and alive man in our heart to my late Prof. Dr. Ahemed Labib. El-Tomi for his supervision, valuable advices, fruitful encouragment, sincere help and unfailing effects during the course of this investigation.

ACKNOWLEDGEMENT

I wish to express my most sincere gratitude to Prof. Dr. Shawky E. Maximos, Prof. of pomology. Faculty of Agriculture, Ain-Shams University for suggesting the current study, his supervision, continous guidance, kind support, revision of the manuscript, fruitful encouragement, and valuable advices.

Deep thanks are offered to Prof. Dr. Zeinab, H. Behairy, Prof. of pomology, Faculty of Agriculture, Ain-Shams University for her supervision, sincere help, useful criticism during the whole investigation and preparing this manuscript.

I would like to express my great thanks to Prof. Dr. M.A. Salama. Prof. of Pomology. Faculty of Agriculture. Cairo University, El-Fayoum, for his advice, kind help for carrying out the anatomical studies.

My sincere gratitude to all for their kind help—during the research.

I also feet that I must extend my deep gratitude for the greatest parent in my life, my father, my mother and my daughter.

CONTENTS

Page
1- INTRODUCTION 1
2- REVIEW OF LITERATURE 3
3- MATERIALS AND METHODS 17
4- RESULTS 28
4-1- Part - 1 - APPLE TRANSPLANTS: 28
4-1-1- Malling Merton 106 apple rootstocks: 25
4-1-1-1- Plants' Salt Tolerance And Injury: 28
4-1-1-2- Organic and Inorganic Endogenous constituments
as affected by salinity: 40
4-1-2 Anna scion budded on MM106 rootstocks: 61
4-1-2-1- Plants' Salt Tolerance and Injury: 61
4-1-2-2- Organic and Inorganic Endogenous constituments
as affected by salinity: 70
4-1-2-3- Anatomical structure as affected by salinity: 79
4-2- Part - 2 - OLIVE TRANSPLANTS: 82
4-2-1- Plants' Salt Tolerance and Injury: 82
4-2-2- Organic and Inorganic Endogenous constituments as
affected by salinity 94
5-DISCUSSION
6- SUMMARY AND CONCLUSIONS
7-REFERENCES
ARABIC SUMMARY

LIST OF TABLES

Page
1- The tap water analysis
2- Macronutrient composition of Long Ashton standard
complete nutrient solution based on ammonium sulphate at
me. equiv. $/1$. and details of stock solutions used for
the preparation of 100 L 20
3- Composition of Hoagland Arnon solution 30
4- Periods for salt injury appearance in Malling Merton 106
apple rootstock plants 29
5- Number of salt injured Malling Merton 106 apple rootstock
plants at the end of each season
6- Growth of Malling Merton 106 apple rootstock plants as
affected by increasing salinity 32
7- Growth of Malling Merton 106 apple rootstock plants as
affected by increasing salinity 33
8- Fresh weight of Malling Merton 106 apple rootstock plants
as affected by increasing salinity
9- Fresh weight of Malling Merton 105 apple rootstock plants
as affected by increasing salinity
10- Dry weight of Malling Merton 106 apple rootstock plants
as affected by increasing salinity 36
11- Dry weight of Malling Merton 106 apple rootstock plants
as affected by increasing salinity
12- Stems' sugars' fractions of Malling Merton 106 apple
rootstock plants as affected by increasing salinity 41

	Page
22-	Roots' N, P and K percentages of Malling Merton 106
	apple rootstock plants as affected by increasing
	salinity 57
23-	Roots' Ca. Mg. Na and Cl percentages of Malling Merton
	106 apple rootstock plants as affected by increasing
	salinity 58
24-	Roots' Ca, Mg. Na and cl percentages of Malling Merton
	106 apple rootstock plants as affected by increasing
	salinity 59
25-	Number of injured Anna scion budded on MM106 apple
	rootstock transplants at the end of each season 62
26-	Periods for salt injury appearance in Anna scion budded
	on MM106 apple rootstock transplants 53
27-	Growth of Anna scion budded on MM106 apple rootstock
	transplants as affected by increasing salinity 65
28-	Fresh weight of Anna scion budded on MM106 apple
	rootstock transplants as affected by increasing
	salinity
29-	Dry weight of Anna scion budded on MM106 apple rootstock
	transplants as affected by increasing salinity 67
30-	Stems' sugars' fractions of Anna budded on MM106 apple
	rootstock transplants as affected by increasing
	salinity 71
31-	Amino acids content in the leaves of Anna scion budded
	on MM106 apple rootstock transplants as affected by
	increasing salinity 72

	Page
32-	Leaves total chlorophylls' content in Anna scion budded
	on MM106 apple rootstock transplants as affected by
	increasing salinity 7
33-	Leaves N, P and K percentages of Anna scion budded on
	MM 106 apple rootstock transplants as affected by
	increasing salinity 70
34-	Leaves Ca, Mg, Na. and Cl percentages of Anna scion
	budded on MM 106 apple rootstock transplants as
	affected by increasing salinity 7
35-	Union-bud anatomy of Anna scion budded on MM106 apple
	rootstock transplants as affected by increasing
	salinity8
36-	Periods for salt injury appearance in Agezi olive
	transplants8
37-	Number of salt injured Agezi olive transplants at the
	end of each season 8
38-	Growth of Agezi olive transplants as affected by
	increasing salinity 8
39-	Growth of Agezi olive transplants as affected by
	increasing salinity 8
40-	Fresh weight of Agezi olive transplants as affected by
	increasing salinity 8
41-	Fresh weight of Agezi olive transplants as affected by
	increasing salinity 8
42-	Dry weight of Agezi olive transplants as affected by
	increasing salinity 9

	Page
43-	Dry weight of Agezi olive transplants as affected by
	increasing salinity 91
44-	Stems' sugars' fractions of Agezi olive transplants as
	affected by increasing salinity 95
45-	Stems' sugars' fractions of Agezi olive transplants as
	affected by increasing salinity 96
46-	Amino acids content in the leaves of Agezi olive
	transplants as affected by increasing salinity 97
47-	Leaves, total chlorophylls' content in Agezi olive
	transplants as affected by increasing salinity 100
48-	Leaves N, P and K percentages of Agezi olive transplants
	as affected by in creasing salinity 102
49-	Leaves N. P and K percentages of Agezi olive transplants
	as affected by increasing salinity 193
50-	Leaves Ca. Mg. Na and Cl percentages of Agezi olive
	transplants as affected by increasing salinity 105
51-	Leaves Ca. Mg. Na and Cl percentages of Agezi olive
	transplants as affected by increasing salinity 106
52-	Roots' N , P and K percentages of Agezi olive transplants
	as affected by increasing salinity 109
53-	Roots' N. P and K percentages of Agezi olive transplants
	as affected by increasing salinity 110
54-	Roots' Ca, Mg. Na and Cl percentages of Agezi olive
	transplants as affected by increasing salinity 111
55~	Roots' Ca. Mg. Na and Cl percentages of Agezi olive
	transplants as affected by increasing salinity 112

LIST OF FIGURES

	Page
1-	Effect of salinity on amino acids content in leaves of
	MM 106 apple rootstocks 44
2-	Leaves N, p and k content of Malling Merton 106 apple
	rootstocks as affected by increasing salinity (1991
	season) 54
3-	Leaves Ca. Mg. Na and Cl content of Malling Merton 106
	apple rootstocks as affected by increasing salinity
	(1991 season) 54
4-	Roots, N. P and K content of Malling Merton 106 apple
	rootstocks as affected by increasing salinity (1991
	season) 60
5-	Roots Ca. Mg, Na and Cl content of Malling Merton 106
	apple rootstocks as affected by increasing salinity
	(1991 season) 60
6-	Effect of salinity on amino acids content in leaves of
	Anna apple scion budded on MM106
7-	Leaves N. P and K content of Anna scion budded on MM106
	apple transplants as affected by increasing salinity
	(1991 season)
8-	Leaves Ca, Mg, Na and Cl content of Anna scion budded
	on MM 106 apple transplants as affected by increasing
	salinity (1991 season)
9–	Effect of salinity on amino acids content in leaves of
	olive cv. (Agezi)