PRODUCTION OF SOME DIETETIC DAIRY PRODUCTS

BY

NABIL MOHAMED SAMY SAIED ABD RABOU

A thesis submited in partial fulfillmen

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

IN

Agricultural Science

(Dairy Science and Technology)

Department of Food Science

Faculty of Agriculture

Ain Shams University

1994

APPROVAL SHEET

PRODUCTION OF SOME DIETETIC DAIRY PRODUCTS

BY

NABIL MOHAMED SAMY SAIED ABD RABOU

B.Sc.Agric.(Dairy Science & Technology) Al-Azhar Univ., (1980) M.Sc.Agric.(Dairy Science & Technologh)Ain Shams Univ.(1987)

This thesis for Ph.D. degree has been approved by:

1- Prof.Dr. H. Abd El - Galil

the Abdel Galil

Prof. of Dairy Science and Technology .

Assuit University.

2- Prof.Dr. Laila B. Abd El-Hamid

10.6.13

Prof. of Dairy Science and Technology .

Ain Shams University.

3- Prof.Dr. G. A. Mahran

GA Mahran

Prof.of Dairy Science and Technology .
Ain Shams University (supervisor).

Date of examination: 2 /7 / 1994.

PRODUCTION OF SOME DIETETIC DAIRY PRODUCTS

BY

NABIL MOHAMED SAMY SAIED ABOU

B.Sc.Agric.(Dairy Science & Technology) Al- Azhar Univ., (1980) M.Sc.Agric.(Dairy Science & Technology) Ain Shams Univ., (1987)

Under the supervision of:

- Prof.Dr. G. A. Mahran
 Professor of Dairy Science and Technology, Ain Shams Univ.
 and Head of Food Sci. Department.
- Prof.Dr. M. A. Khorshid
 Professor of Dairy Science and Technology, National Research Center.
- Prof.Dr. Y. A. El- Samragy
 Professor of Dairy Microbiology and Technology, Ain Shams Univ.

Abstract

Dietetic dairy products has been developed to help special group of people. The dietetic milk products are produced either by reducing one component or more such as low fat, low lactose and low cholesterol dairy products; or by fortification with special component from external sources such as vitamins and minerals.

So, this research was planned to produced some new dietetic dairy products for special functions and special people. The study was dealt with iron fortification of yoghurt and white cheese for overcoming the iron-deficiency anemia for producing the light dairy products, this study was concerned with using diafiltrated milk; which had a low lactose content; in manufacturing of ice-milk with replacement of sucrose with another sweetener such as high fructose corn syrup. The research had been carried-out under three parts. Yoghurt made from buffalo's milk and fortified with different source of iron, electrolytic iron, ferric chloride, ferrous sulphate, at three ratios of 40, 60, and 80 mg/kg. White soft cheese made from UF buffalos milk retentates with different types of iron at the same ratios. Manufacture of ice milk from diafiltrated milk and high fructose corn syrop 90 instead of sucrose.

results showed that :

- 1- Fortified yoghurt with electrolytic iron and ferric clie-ride causing nor or ; minor effects, on the produced yoghurt either flavour or colour
- 2-The effect of iron source and concentration had a highly significant effect on chemical composition of all resultant yoghurt where acidity, npn and diacetyl were increased freshly and during consumed period by increasing the iron concentration. While pH, lactose, and acetaldehyde were decreased.
- 3- The iron fortification of white soft cheese had highly significant effect on the acidity of cheese where acidity percent was increased by increasing the iron concentration.
- 4- Fat, salt and total nitrogen content were increased in all treatment white soft cheese after 15 days of consumed period.
- 5- The fortified cheese with different types and concentration of iron had increasing in their TBA values and PV during consumed
- 6- The resultant white soft cheese fortified with electrolytic iron (T2) by 80 mg Fe/kg gave the high scoring point, followed by cheese fortified with ferric chloride T3 at the same ratio, the both cheese possessed good body & texture with desirable flavour and acceptable colour. No off-flavour was appeared along 15 days consumed period.
- 7- Increasing of added HFCS 90 had a highly significant increase in the acidity percent, and viscosity of treatments than control
- 8- specific gravity and weight per gallon of the mix as well as the resultant ice milk were decreased as the percentage of HFCS 90 increased.
- 9- Combining sucrose and with HFCS 90 was found to posses a lowering effect on the organoleptic properties of resultant ice milk.

Key words:

Iron-yoghurt; yoghurt, Fe-fortification, white cheese. UF-cheese, iron-cheese, nutrition-cheese, dairy products; ice milk, DF-milk, sweeteners, fructose, HFCS, diabetic; dietetic dairy products.

ACKNOWLEDGEMENT

The author would like to express his deep gratitude and appreciation to *Prof.Dr. G.A.Mahran* professor of Dairy Science and Technology and Head of Food Science Department, and *Prof.Dr. Y.A.El-Samragy*, professor of Dairy Microbiology and Technology at the same Department Faculty of Agriculture, Ain Shams University, for suggesting the proplem, kind, encouragment and constructive advice during conducting this investigation and preparation of the text.

Deep gratitude is also extended to *Prof.Dr.M.A.Khorshid*, professor of Dairy Science and Technology and Deputy Chairman of Food Technology and nutrition Divion and *Prof.Dr. Azza A. Ismail*, professor of Dairy Scienceand Technology at National Research Centre, for the help, guidance and suggestions, they kindly offere during the investigation.

Thankes also are due to all members of the Department of Food Science, Ain shams Univ. and Department of Dairying and Food Technology, NRC for every possible help and facilities of fered to make this work possible.

CONTENTS

LIST OF TABLE	
LIST OF FIGURES	
ITRODUCTION	1
REVIEW OF LITERATUURE	
1- Fortification of dairy products with iron	.4
2- High fructose corn syrup in ice milk manufacture	13
MATERIAL AND METHODS	
- Materials	24
II- Methods of manufacture	25
III- Methods of analysis	27
IV- Expermental	33
RESULTS AND DISCUSSION	
Part : Iron fortification of yoghurt	37
Part II : Fortification of whit soft cheese with iron	66
Part III: Manufacture of ice milk from diafiltrated milk and	
high fructose corn syrup	104
SUMMARY AND CONCLUSION	
I- Iron fortification of yoghurt	121
2- Fortification of white soft cheese with iron	122
3- Manufacture of ice milk from diafiltrated milk and	
high fructose corn syrup	124
REFERENCES	127
ARABIC SUMMARY	

LIST OF TABLE

Table	Page
1- Effect of iron fortification of yoghurt on the acidity percent during consuming	39
2- Factorial analysis for the effect of iron fortification and consumed period on the acidity of yoghurt	39
3- Effect of iron fortification of yoghurt on the pH values during consuming	42
4- Factorial analysis for the effect of iron fortification and consumed period on the pH of yoghurt	42
5- Effect of iron fortification of yoghurt on the total solids content during consuming	44
6- Factorial analysis for the effect of iron fortification and consumed period on the total solids of yoghurt	44
7- Effect of iron fortification of yoghurt on the fat content during consuming	47
8- Factorial analysis for the effect of iron fortification and consumed period on the fat of yoghurt	47
9- Effect of iron fortification of yoghurt on the lactose content during consuming	49
10- Factorial analysis for the effect of iron fortification and consumed period on the lactose of yoghurt	49
11- Effect of iron fortification of yoghurt on the total nitrogen content during consuming	52
12- Factorial analysis for the effect of iron fortification and consumed period on the total nitrogen content of yoghurt	52
13- Effect of iron fortification of yoghurt on the non-protin nitrogen (%) during consuming	55
14 - Factorial analysis for the effect of iron fortification and consumed period on the non-protin nitrogen (%) of yoghurt	55

15- Effect of iron fortification of yoghurt on the acetaldehyde content during consuming	. 58
Factorial analysis for the effect of iron fortification and consumed period on the acetaldehyde of yoghurt	58
17- Effect of iron fortification of yoghurt on the diacetyl content during consuming	. 61
18- Factorial analysis for the effect of iron fortification and consumed period on the diacetyl of yoghurt	61
Effect of iron fortification of yoghurt on the organoleptic properties during consuming	64
20- Effect of iron fortification on the titratabel acidity of white soft cheese during consuming	68
21- Factorial analysis for the effect of iron fortification and consumed period on the acidity of white soft cheese	68
22- Changes in the pH values of white soft cheese as affected by iron fortification during consumed period	71
23- Factorial analysis for the effect of iron fortification and consumed period on the pH of white soft cheese	71
24- Effect of iron fortification on the total solids content of white soft cheese during consuming	74
25- Factorial analysis for the effect of iron fortification and consumed period on the total solids of white soft cheese	74
26- Effect of iron fortification on the fat content of white soft cheese during consuming	77
27- Factorial analysis for the effect of iron fortification and consumed period on the fat of white soft cheese	7 7
28-Effect of iron fortification on the total nitrogen content of white soft cheese during consuming	80
29- Factorial analysis for the effect of iron fortification and consumed period on the total nitrogen of white soft cheese	80
30- Effect of iron fortification on the soluble nitrogen content of white soft cheese during consuming.	83

31-Factorial analysis for the effect of iron fortification and consume period on the soluble nitrogen of white soft cheese.	. 83
32- Effect of iron fortification on the salt content of white soft cheese during consuming	85
33- Factorial analysis for the effect of iron fortification and consumed period on the salt of white soft cheese	85
34- Effect of iron fortification on the tiobarbituric acid content of white soft cheese during consuming	88
35- Factorial analysis for the effect of iron fortification and consumed period on the tiobarbituric acid of white soft cheese	e 88
36- Effect of iron fortification on the peroxide values content of white soft cheese during consuming	91
37- Factorial analysis for the effect of iron fortification and consumed period on the peroxide values of white soft cheese	91
38- Organoleptic score for white soft cheese made from concentrated milk fortified with iron during consuming	95
39- Amino acids composition for white soft cheese fortified with iron	100
40- Essential amino acids for daily composition as calculated for 100 grams of white soft cheese fortified with iron	101
41- Computation of biological values of white soft cheese made from concentrated milk fortified with iron	103
42- Effect of combining sucrose and high fructose corn syrup 90 on some properties of ice milk mix	106
43- Analysis of variance for acidity of ice milk mix	106
44- Analysis of variance for specific gravity of ice milk mix	107
45- Analysis of variance for weight per gallon of ice milk mix	107
46- Analysis of variance for freezing point of ice milk mix	107
47- Effect of combining sucrose and high fructose corn syrup 90 on the viscosity of ice milk mix aged fro different period	110

48- Analysis of variance for viscosity of ice milk mix at different periods	110
49- Effect of combining sucrose and high fructose corn syrup 90 on some properties of the resulting ice milk	113
50- Analysis of variance for specific gravity of the resulting ice milk	114
51- Analysis of variance for weight per gallon of the resulting ice milk	114
52- Analysis of variance for overrun of the resulting ice milk	114
53- Effect of combining sucrose and high fructose corn syrup 90 on the melting resistance of the resulting ice milk	117
54- Analysis of variance for melting resistance of the resulting ice milk	117
55- Effect of combining sucrose and high fructose corn syrup	110

LIST OF FIGURES

Fig.		Page
1	Changes in the acidity percent of yoghurt as affected by	
	iron fortification)
2	Changes in the pH values of yoghurt as affected by iron	
	fortification	3
3	Changes in the total solids percent of yoghurt as affected	
	by iron fortification	5
4	Changes in the fat percent of yoghurt as affected by iron	
	fortification	3
5	Changes in the lactose percent of yoghurt as affected by	
	iron fortification 50)
6	Changes in the total nitrogen percent of yoghurt as	
	affected by iron fortification	3
7	Changes in the non protein nitrogen percent of yoghurt as	
	affected by iron fortification	6
8	Changes in the acetaldehyde of yoghurt as affected by	
	iron fortification)
9	Changes in the diacetyl of yoghurt as affected by iron	
	fortification	<u>)</u>
10	Changes in the acidity percent of white soft cheese as	
	affected by iron fortification	3
11	Changes in the pH values of white soft cheese as affected	
	by iron fortification	2
12	Changes in the total solids percent of white soft cheese as	
	affected by iron fortification)

13	Changes in the fat percent of white soft cheese as affected
	by iron fortification78
14	Changes in the total nitrogen percent of white soft cheese
	as affected by iron fortification
15	Changes in the soluble nitrogen percent of white soft cheese
	as affected by iron fortification
16	Changes in the salt percent of white soft cheese as affected
	by iron fortification
17	Changes in the thiobarbituric acid of white soft cheese as
	affected by iron fortification
18	Changes in the peroxide values of whitesoft cheese as
	affected by iron fortification 92

INTRODUCTION

The dramatic changes in the lifestyle during the last two decades, have created an increasing demand for healthier foods. Product developers were quick to respond and a range of new products have been lunched to meet this trend. The concept of product diversification is becoming even more widespread. Therefore, milk was once the only beverage rich in calcium, yet suddenly a selection of products with added calcium are available in the world market to compete with milk.

The dairy scientists, technologists and industry responded to this new trend in food consumption, by presenting new dairy products of special function and characteristics. New fermented milk products with selected dairy products and dietetic preparations are available now in the markets.

The demand for dietetic foods is growing. These foods may be formulated for people suffering from nutritional diseases, physiological disorders or for healthy people with additional needs. Dietetic food has to meet the following r requirement:

- develops a special physiological action to cure people suffering from nutritional disorders.
- disposes a special composition which corresponds to actual knowledge in nutrition science
- corresponds to the national legislation regarding dietetic products.
- carefully manufactured; as low as possible heat mechanical treatments
 purity of the raw materials and additives and quality of the final product.
- reduce the quantity of non milk additives to a minimum level (better digestibility).

Dietetic milk products are produced either by reducing the content of a special component or components or by fortification with special component /components from external sources. As an example for the first group are low fat or lactose dairy products and for the second group fortification with dietary fibers vitamins and minerals

Although milk and milk products are considered as rich source of calcium, magnesium, phosphorus, zinc, iodine and selenium, they are poor in some other elements particularly iron. Iron deficiency in the diet results in anemia, a nutritional disease, widely prevalent in Egypt particularly between preschool children whose rapid growth increases their need for iron. A recent surveillance (Nutrition institute, 1978) revealed that 40 % of school children were suffering from iron deficiency anemia.

Iron fortification has long been practiced in milk formulation for bottle fed babies.

The popularity of cheese and fermented milk products made them as natural candidates for iron fortification considering their ability to deliver rare combination of two vital nutrients; namely calcium and iron. An active and intensive research abroad resulted in the development of iron fortified cheeded cheese. The bioavailability of iron from this iron fortified cheese best dietary sources of iron.

Despite its importance, iron fortification of dairy products may affect the quality and storage stability of the fortified products. Therefore, a thorough investigation on the possible effects of iron fortification and ways to combat these problems are needed before any recommendation can be given for its use in milk products.