DIES ON BIOFERTILIZATION IN DESERT SOILS

By

EMAD MOHAMED YASSIN ABD-EL-RAGQUE FAID

A Thesis Submitted h. Partial Fulfillment of
The Requirements for the Degree of
MASTER OF SCENCE

In

(Agricultural Microbiology)

Department of Agric. Microbiology

Faculty of Agriculture

Ain-Shams University

u8814

1994

Approval Sheet

STUDIES ON BIOFERTILIZATION IN DESERT SOILS

By

EMAD MOHAMED YASSIN ABD-EL-RACOUF FAID

B.Sc.(Agric. Microbiology), Fac. of Agric., Ain-Shams University 1978

This Thesis for M.Sc. Degree has been Approved $\mathbf{B}\mathbf{y}$

Prof. Dr.M.K. ZAHRA Prof. and Head of Agric. Microbiology Dept., Fac. Agric., Cairo Univ.

El Hadded M. E

Prof. of Agric. Microbiology, Fac. Agric., Ain-Shams Univ.

Prof. Dr. M.E. M. EL-HADDAD

(Supervisor) Mashhoar W-A. Prof. Dr. W.A. MASHHOOR Prof. of Agric. Microbiology, Fac. Agric., Ain-Shams Univ.

Date of Examination

19/1/ 1994

Zahra M.K.

STUDIES ON BIOFERTILIZATION IN DESERT SOILS

 $\mathbf{B}\mathbf{y}$

EMAD MOHAMED YASSIN ABD-EL-RAOOUF FAID

B.Sc. (Agric. Microbiol.), 1978, Ain-Shams University

UNDER THE SUPERVISION

OF

Prof. Dr. W.A. MASHHOOR

Prof. Agric. Microbiology, Dept. Agric. Microbiol. Fac. Agric., Ain-Shams University

Prof. Dr. M.A. EL-BOROLLOSY

Prof. Agric. Microbiology, Dept. Agric. Microbiol.
Fac. Agric., Ain-Shams University

Prof. Dr. M.A. EL-SIBAIE

Head of Soil Fertility and Microbiology Dept., Desert Research Center

ABSTRACT

Two field experiments were carried out in two successive seasons (1989-1990 & 1990 - 1991) to investigate the effects of biofertilization using associative N₂-fixers (Azotobacter chroococcum and Azospirillum lipoferum) and/or symbiotic ones (Bradyrhizobium japonicum) on the growth and yield of salt tolerant variety of wheat plants. Cultivation was carried out in desert loamy sandy soil (Ras-Sidr, South Sinai). The growing plants were irrigated with a salty water of 7000 ppm of total soluble salts

and supplemented with full or half the normal field dose of inorganic N-fertilizer. Organic manure (garbage compost) was applied at the rate of 0.5% one month before the beginning of experiments. Plant and rhizospheric soil samples were periodically collected during 120 days after wheat cultivation to determine soil total nitrogen, organic carbon content, CO₂ evolution, total microbial count, densities of fungi, actinomycetes, azotobacters, and azospirilla. At harvest time, straw and grain yields were determined as well as total nitrogen content of straw and grains.

The obtained results showed that inoculation with a multistrains inoculant (Azotobacter, Azospirillum and Bradyrhizobium) gave the highest growth and yield of wheat plants in the presence of the full dose of inorganic N-fertilizer.

Key Words:

Azotobacter chroococcum, Azospirillum lipoferum, Bradyrhizobium japonicum, biofertilizer, rhizosphere, fungi, actinomycetes, garbage compost.

LIST OF CONTENTS

		Page
1.	INTRODUCTION	Ī
2.	REVIEW OF LITERATURE	3
	2.1. Definitions	3
	2.2. Nitrogen fixing microorganisms in soil and	
	rhizosphere	3
	2.3. Biofertilization using associative diazotrophs	6
	2.4. Biofertilization using symbiotic diazotrophs	17
	2.5. Effect of organic matter on the effectiveness of	
	biofertilizers	19
	2.6. Effect of available nitrogen compounds on the	
	effectiveness of biofertilizers	22
	2.7. Effect of salinity on the effectiveness of	
	biofertilizers	24
3.	MATERIALS AND METHODS	28
	3.1. Materials	28
	3.1.1. Location of experiments	28
	3.1.2. Organic manure	28
	3.1.3. Inorganic fertilizers	28
	3.1.4. Cultivar	28
	3.1.5. Inoculants	28
	3.1.6. Media used	31
	3.2 Methods	26

	Page
3.2.1. Layout of field experiments	35
3.2.1.1. The first experiment	35
2.3.1.2. The second experiment	36
3.2.2. Inorganic fertilization	38
3.2.3. Inoculation procedure	38
3.2.4. Sampling and determinations	38
3.2.4.1. Mechanical analysis	39
3.2.4.2. Moisture content	39
3.2.4.3. Soil pH	39
3.2.4.4. Organic carbon	39
3.2.4.5. Total nitrogen	39
3.2.4.6. Calcium carbonate	39
3.2.4.7. Total soluble salts	39
3.2.4.8. Electrical conductivity	40
3.2.4.9. Exchangeable sodium percentage	40
3.2.4.10. Determination of CO ₂ evolution	40
3.2.4.11. Microbiological determinations	40
3.2.5. Statistical analysis	40
RESULTS	41
4.1. The 1st experiment	41
4.1.1. Total nitrogen and organic carbon in soi	1
cultivated with wheat plants as affected by	
inoculation with associative N2-fixers an	
N-supplementation	
4.1.1.1. Soil total nitrogen	. 4]

	Page
4.1.1.2. Soil organic carbon	43
4.1.2. CO ₂ evolved from soil cultivated with wheat	
plants as affected by inoculation with associative	
N ₂ -fixers and N-supplementation	43
4.1.3. Microbial changes in wheat rhizosphere as	
affected by inoculation with associative N2-fixers	
and N-supplementation	46
4.1.3.1. Total microbial densities	46
4.1.3.2. Densities of azotobacters	48
4.1.3.3. Densities of azospirilla	50
4.1.3.4. Densities of fungi	50
4.1.3.5. Densities of actinomycetes	50
4.1.4. Wheat yield as affected by inoculation with	
associative N ₂ -fixers and N-supplementation	54
4.1.4.1. Biological yield	55
4.1.4.2. Root dry weight	55
4.1.4.3. Straw yield	58
4.1.4.4. Grain yield	58
4.1.4.5. Nitrogen content of wheat plants	61
4.1.4.6. Nitrogen content of wheat grains	61
4.2. The 2nd experiment	61
4.2.1. Total nitrogen and organic carbon in soil	
cultivalted with wheat plants as affected by	
inoculation with N ₂ -fixers (associative and/or	
symbiotic) and N-supplementation	64

	Page
4.2.1.1. Soil total nitrogen	64
4.2.1.2. Soil organic carbon	66
4.2.2. CO ₂ evolved from soil cultivated with wheat	
plants as affected by inoculation with N2-fixers	
(associative and/or symbiotic) and	
N-supplementation	67
4.2.3. Microbial changes in wheat rhizosphere as	
affected by inoculation with N ₂ -fixers	
(associative and/or symbiotic) and	
N-supplementation	70
4.2.3.1. Total microbial densities	70
4.2.3.2. Densities of azotobacters	72
4.2.3.3. Densities of azospirilla	74
4.2.3.4. Densities of fungi	74
4 2 3 5. Densities of actinomycetes	77
4 2 4 Wheat yield as affected by inoculation with	ı
N ₂ -fixers (associative and/or symbiotic) and	1
N-supplementation	. 79
4.2.4.1. Biological yield	. 79
4.2.4.2. Root dry weight	. 81
4 2.4.3. Straw yield	. 81
4.2.4.4. Grain yield	. 84
4 2 4.5. Nitrogen content of wheat plants	., 60
4 2 4 6 Nitrogen content of wheat grains	
5. GENERAL DISCUSSION AND CONCLUSION	N 20
6 SUMMARY	. 70
7. REFERENCES	107
ARABIC SUMMARY.	

LIST OF TABLES

Table		Page
1	Soil physical analysis of investigated area (Ras-Sidr, South Sinai)	29
2	Soil chemical analysis of investigated area (Ras-Sidr, south Sinai)	30
3	Total nitrogen in soil cultivated with wheat plants as affected by inoculation with associative N ₂ -fixers and inorganic N-supplementation	42
4	Organic carbon in soil cultivated with wheat plants as affected by inoculation with associative N ₂ -fixers and inorganic N-supplementation	44
5	CO ₂ evolution in soil cultivated with wheat plants as affected by inoculation with associative N ₂ -fixers and inorganic N-supplementation	45
6	Total microbial densities in the rhizosphere of wheat plants as affected by inoculation with associative N ₂ -fixers and inorganic N-supplementation	47
7	Most probable numbers of azotobacters in the rhizosphere of wheat plants as affected by inoculation with associative N ₂ -fixers and inorganic	
	N-supplementation	49

Table		Pag
8	Most probable numbers of azospirilla in the rhizosphere of what plants as affected by inoculation with associative N ₂ -fixers and inorganic N-supplementation	51
9	Total fungal densities in the rhizosphere of wheat plants as affected by inoculation with associative N ₂ -fixers and inorganic N-supplementation	52
10	Total actinomycetal densities in the rhizosphere of wheat plants as affected by inoculation with associative N ₂ -fixers and inorganic N-supplementation	53
11	Effect of inoculation with associative N ₂ -fixers and N-supplementation on biological yield of wheat plants	56
12	Effect of inoculation with associative N ₂ -fixers and N-supplementation on wheat root dry weight after 120 days of cultivation	57
13	Effect of inoculation with associative N ₂ -fixers and N-supplementation on straw yield of wheat plants	59
14	Effect of inoculation with associative N ₂ -fixers and N-supplementation on grain yield of wheat plants.	60
15	Effect of inoculation with associative N ₂ -fixers and N-supplementation on nitrogen content of wheat plants	62

Table		Page
16	Nitrogen content of wheat grains as affected by inoculation with associative N ₂ -fixers and N-supplementation	63
17	Soil total nitrogen as affected by inoculation with Bradyrhizobium japonicum + associative N ₂ -fixers and supplementation with inorganic N-fertilizer	65
18	Soil organic carbon as affected by inoculation with Bradyrhizobium japonicum + associative N ₂ -fixers and inorganic N-supplementation	68
19	CO ₂ evolution as affected by inoculation with Bradyrhizobium japonicum + associative N ₂ -fixers and inorganic N-supplementation	69
20	Total microbial density in the rhizosphere of wheat plants as affected by inoculation with Bradyrhizobium japonicum + associative N ₂ -fixers and inorganic N-supplementation	71
21	Most probable numbers of azotobacters in the rhizosphere of wheat plants as affected by inoculation with <i>Bradyrhizobium japonicum</i> + associative N ₂ -fixers and inorganic N-supplementation.	73
22	Most probable numbers of azospirilla in the rhizosphere of wheat plants as affected by inoculation with <i>Bradyrhizobium japonicum</i> + associative N ₂ -fixers and inorganic N-supplementation	75

lable		Page
23	Total fungal densities in the rhizosphere of wheat plants as affected by inoculation with Bradyrhizobium japonicum + associative N ₂ -fixers and inorganic N-supplementation	76
24	Total actinomycetal densities in the rhizosphere of wheat plants as affected by inoculation with Bradyrhizobium japonicum + associative N ₂ -fixers and inorganic N-supplementation	78
25	Effect of inoculation with <i>Bradyrhizobium</i> japonicum + associative N ₂ -fixers and N-supplementation on biological yield of wheat plants	80
26	Effect of inoculation with <i>Bradyrhizobium</i> japonicum + associative N ₂ -fixers and N-supplementation on wheat root dry weight after 120 days of cultiviation	82
27	Effect of inoculation with <i>Bradyrhizobium</i> japonicum + associative N ₂ -fixers and N-supplementation on straw yield of wheat plants	83
28	Effect of inoculation with <i>Bradyrhizobium</i> japonicum + associative N ₂ -fixers and N-supplementation on grain yield of wheat plants	85

Table		Page
29	Effect of inoculation with $Bradyrhizobium$ $japonicum +$ associative N_2 -fixers and N -supplementation on nitrogen content of wheat	
	plants	87
30	Nitrogen content of wheat grains as affected by inoculation with <i>Bradyrhizobium japonicum</i> + associative N ₂ -fixers and inorganic N-supplementation	88

1- INTRODUCTION

It is well known that cultivation of cereals in sandy soils is of a great importance especially in developing countries like Egypt, where desert lands are prevailing (about 94% of the whole area) and nutrition is mainly based on cereals.

Much interest is focussed on dinitrogen fixing systems to improve plant growth and consequently straw and grain yields of many of graminious plants. However, for a long time, stress has been given to such systems as important means for providing nitrogen to the growing plants and for overcoming the continuous loss of nitrogen resources from soil due to draining, denitrification processes and plant uptake.

Even under modern agriculture, only a fraction of the crop need for nitrogen comes from synthetic inorganic and natural organic fertilizers, the remaining portion is satisfied through biological N₂-fixation. Alexander (1977) reported that an amount of 10⁸ to 10⁹ tons of nitrogen were introduced to the soil via biological N₂-fixation per annum.

Biofertilization with associative and symbiotic N_2 -fixers gave appreciable increases in both grain and straw yields of different cereal crops (Hegazi, et al 1979, Fouad, 1981; Hess, 1981; Ishac et al 1986 b; Subba-Rao, 1986; El-Borollosy et al 1986; Yousef, et al 1986; Saleh et al 1986; Arshad et al 1987; Abdel-Aziz et al 1989; Ishac et al 1991 a,b,c,d; El-Demerdash et al 1992, 1993). The stimulatory effect of N_2 -fixers on plant growth can attributed not only to N_2 -fixation activity, but also to the production of growth promoting substances (Reynders & Vlassak, 1982; El-Haddad, et al 1986).