PRODUCTION OF SWEETNERS FROM CEREALS AND OTHER STARCHY SOURCES

BY

Abd El-Aziz Nadir Shehata Mohamed

A thesis submitted in partial fulfillment

o f

the requirements for the degree of

DOCTOR OF PHILOSOPHY

64 22

in

Agricultural Science

(Food Science and Technology)

C 3354/

Food Science Department
Faculty of Agriculture
Ain Shams University

1992

Approval Sheet

PRODUCTION OF SWEETNERS FROM CEREALS AND OTHER STARCHY SOURCES

BY

Abd El-Aziz Nadir Shehata Mohamed

B. Sc. (Food Science and Technology) 1979 Faculty of Agriculture, Ain Shams University.

M. Sc. (Food Science) 1986 Faculty of Agriculture, Moshtohor, Zagazig University.

This thesis for ph. D. degree has been approved by :

Prof. Dr. S. A. Soliman . S. A. S. S. www. Prof. of Food Science, Fac. of Agric. Moshtohor. Zagazig University.

Prof. Dr. M. A. El-Samkary M. A. R-Samleavy Prof. of Food Science. Fac. of Agric.. Ain Shams University.

Prof. Dr. N. R. Abd El-Rahaman New York A.C. ...

Prof. of Food Science.
Fac. of Agric..
Ain Shams University.

Date of examination : / /1992

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to Prof. Dr. Nadiah R. Abd El-Rahman prof. of food science and technology, Food Science Dept., Faculty of Agriculture, Ain Shams University for supervising and guiding the work. Her valuable comments and encouragement are greatly appreciated.

My sincere gratitude to Prof. Dr. Ferial M. Abu Salem professor of food science, Dept. of Food Technology and Dairy Science, National Research Centre, for suggesting the problem and her valuable supervising through the whole work.

Thanks to Prof. Dr. R. M. Mahmoud professor of food science and technology, Food Science Dept., Faculty of Agriculture, Ain Shams University for his reasonable help.

The author would like to extend his deep gratitude to NRC staff for the facilities provided throughout this work.

PRODUCTION OF SWEETNERS FROM CEREALS

AND OTHER STARCHY SOURCES

BY

Abd El-Aziz Nadir Shehata Mohamed

B. Sc. (Food Science and Technology) 1979 Faculty of Agriculture, Ain Shams University.

M. Sc. (Food Science) 1986 Faculty of Agriculture, Moshtohor, Zagazig University.

Under the supervision of :-

Prof. Dr. Ferial M. Abu-Salem
Prof. of Food Science and Technology
National Research Centre.

ABSTRACT

Chemical composition of the investigated samples: i.e tapioca, potato, corn 45 was considered. The obtained results, especially those related to hydrocyanic acid content of the same samples proved that the cultivated tapioca could be considered as a sweet variety and its starch may be used safety in edible purposes. The optimum conditions for amylase, (Fungal a-amylase), β -amylase, Amyloglucosidase and glucose isomerase enzymes, which act on different starch types, were specified through evaluating of these enzymes.

Production of glucose syrup by one step using amyloglucosidase under its optimum condition of activity indicated that the glucose content reached 83.41, 93.67, 91.83, 93.67, 92.17 and 38.28% for potato, tapicca (Amerky and Antonicy), corn 45, Mostorod starch and soluble starch respectively.

On the other hand, when the two steps enzymes method was applied by using α -amylase and amyloglucosidase the results showed that the percentage of the produced glucose was ranged between 50.88 to 97.91%.

Production of maltose syrup by β -amylase under the optimum condition showed that the percentage of maltose content was 90.22, 87.21, 86.11, 85.41, 83.21 and 65.51 for potato, tapioca (Amerky and Antonicy), corn 45, Mostorod starch and soluble starch respectively. In case of using Fungal α -amylase, the obtained data proved that the percentage of maltose content was ranged between 38.36 to 60.34%.

For the production of high fructose syrup by using glucose isomerase the available data indicated that the maximum conversion value to fructose was obtained with initial glucose syrup concentration that varied between 38.36% and 59.04%.

LIST OF CONTENTS

	Pag
LIST OF TABLES	vi;
LIST OF FIGURES	хi
LIST OF ABBREVIATION	
INTRODUCTION	
REVIEW OF LITERATURE	
- Chemical composition of different starch sources	
- Chemical composition of industrial starch	
- Hydrocyanic or prussic acid content of Tapioca	
- Characteristics of a-amylase	
- Characteristics of β-amylase	29
- Characteristics of glucoamylase	31
- Characteristics of glucose isomerase	
- Production of glucose syrup	
- Production of maltose syrup	
- Production of high fructose syrup	
MATERIALS AND METHODS	
A - MATERIALS	0.0
B - METHODS	66
1 - Starch in-latin	
	67
- Preparation of corn 45 starch	67
- Preparation of tapioca starch	88
- Preparation of potato starch	20

2 - Chemical and Enzymatic methods	70
- Total and reducing sugar	7 L
- Hydrocyanic acid	7 j
- Determination of the activity of a-amylase	
 Determination of the activity and stability of 	
a-amylase as effected by :-	
a - Enzyme concentration	73
b - Substrate concentration	73
c - Temperature	74
d - pH	7 4
e - Time	74
 Determination of the activity of Fungal Alpha 	
amylase	75
 Determination of the activity and stability of 	
Fungal a-amylase as effected by :-	
a - Enzyme concentration	7 5
b - Substrate concentration	76
c - Temperature	
d - pH	7 6
	76
	77
	7 7
- Determination of the activity and stability of	
β -amylase as affected by :-	

	a - Enzyme concentration	7 \$
	b - Substrate concentration	78
	c - Temperature	79
	d - pH	79
	e - Time	30
_	Determination of the activity of glucoamylase	80
_	Determination of the activity and stability of	
	glucoamylase as effected by :-	
	a - Enzyme concentration	81
	b - Substrate concentration	8 1
	c - Temperature	8 2
	d - pH	82
	e - Time	82
-	Determination of the activity of glucose	
	isomerase	8.3
-	Determination of the activity and stability of	
	glucose isomerase as effected by :-	
	a - Enzyme concentration	83
	b - Substrate concentration	84
	c - Temperature	85
	d - pH	8 5
	e - Time	86

3 -	Production methods of sweetners from different	
	starch sources :-	
	- Production of starch hydrolyzate by using	
	a-amylase	86
	- Production of maltose syrup by using	
	ß-amylase	8 7
	- Production of maltose syrup by using	
	Fungal a-amylase	87
	- Production of glucose syrup by using	
	a) Glucoamylase	3 7
	b) Two steps enzyme	38
	- Production of fructose by glucose isomerase 8	3 9
RESULTS AN	ND DISCUSSION	
Part	I	
	- Chemical composition of different starch	
	sources,	ه ا
	- Chemical	4
	- Effect of starch processing steps on HCN	
	content of tapioca varieties 9	7
Part	II	
	- Factors affecting activity and stability of	
	the used enzymes 10	00

-	Effect of enzyme concentration on the reactio	n
	velocity of the used enzymes	
	A) α-amylase	101
	b) β -amylase	
	c) Amyloglucosidase	
	d) Glucose isomerase	
-	The activity of enzymes on different starch	
	types as affected by substrate concentration	
	A) α-amylase	116
	b) β-amylase	135
	c) Amyloglucosidase	145
	d) Glucose isomerase	154
-	Effect of temperature	160
	A) α-amylase	161
	b) β-amylase	l 7 1
	c) Amyloglucosidase	176
	d) Glucose isomerase	180
-	Effect of pH	185
	A) α-amylase	185
	b) β-amylase	196
	c) Amyloglucosidase	202
	d) Glucose isomerase	206

- Effect of time on the reaction velocity of	
the used enzymes	
A) α-amylase	212
b) β-amylase	215
c) Amyloglucosidase	2 2 0
d) Glucose isomerase	220
Part III	
Enzyme hydrolysis of starch to sugar syrup	
1 - Hydrolysis of different starch types by	
a-amylase	226
2 - Producton of glucose syrup by using	
a) Amyloglucosidase	228
b) α -amylase	231
3 - Production of high maltose syrup by	
a) β -amylase	234
b) Fungal α -amylase	237
4 - Conversion of starch to high fructose	
syrup	242
SUMMARY	45
REFFERENCES 2	50
ARABIC SUMMARY	

LIST OF TABLES

Table	(1)	Chemical composition of different starch sources.	.9)
Table	(2)	Chemical composition of different types of starch	
		isolated from different sources	95
Table	(3)	Effect of starch processing steps on HCN content	
		of tapioca starch	98
Table	(4)	The activity of a-amylase on different starch	
		types as affected by concentration of enzyme	103
Table	(5)	The activity of fungal a-amylase on different	
		starch types as affected by concentration of	
		enzyme	105
Table	(6)	The activity of β -amylase on different starch	
		types as affected by concentration of enzyme	108
Table	(7)	The activity of Amyloglucosidase on different	
		starch types as affected by concentration of	
		enzyme	110
Table	(8)	The activity of glucose isomerase on pure glucose	
		and glucose syrup as affected by concentration of	
		enzyme	113
Table	(9)	The activity of a-amylase on different starch	
		types as affected by temperature	14.1
Table(10)	The stability of α-amylase on different starch	
		types as affected by temperature	141

- vill -

Table(11)	The activity of Fungal a-amylase on different	
	starch types as affected by temperature	147
Table(12)	The stability of Fungal a-amylase on different	
	starch types as affected by temperature	147
Table(13)	The activity of \$\beta\-amylase on different starch	
	types as affected by temperature	15:
Table(14)	The stability of β -amylase on different starch	
	types as affected by temperature	1.5
Table(15)	The activity of Amyloglucosidase on different	
	starch types as affected by temperature	156
Table(16)	The stability of Amyloglucosidase on different	
	starch types as affected by temperature	15E
Table(17)	The activity of glucose isomerase on different	
	starch types as affected by temperature	160
Table(18)	The stability of glucose isomerase on different	
	starch types as affected by temperature	160
Table(19)	The activity of a-amylase on different starch	
	types as affected by pH	165
Table(20)	The stability of a-amylase on different starch	
	types as affected by pH	166
Table(21)	The activity of Fungal a-amylase on different	
	starch types as affected by pH	17/

Table(22)	The stability of Fungal a-amylase on different	
	starch types as affected by pH 1	7:2
Table(23)	The activity of β -amylase on different starch	
	types as affected by pH	1 7 <i>E</i>
Table(24)	The stability of β -amylase on different starch	
	types as affected by pH	i 7 <i>6</i>
Table(25)	The activity of Amyloglucosidase on different	
	starch types as affected by pH	182
Table(26)	The stability of Amyloglucosidase on different	
	starch types as affected by pH	1.82
Table(27)	The activity of glucose isomerase on different	
	starch types as affected by pH	186
Table(28)	The stability of glucose isomerase on different	
	starch types as affected by pH	136
Table(29)	The activity of a-amylase on different starch	
	types as affected by time	192
Table(30)	The activity of Fungal a-amylase on different	
	starch types as affected by time	195
Table(31)	The activity of β -amylase on different starch	
	types as affected by time	197
Table(32)	The activity of Amyloglucosidase on different	
	starch types as affected by time	200