PHYSIOLOGICAL STUDIES ON ADAPTIVE MECHANISM RELATED TO SALT TOLERANCE IN SOME VEGETABLE CROPS

By

YOMNA IBRAHIM HASSANEEN HELMY

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in
Agricultural Science
(Vegetable Crops)

9.9.

Department of Horticulture Faculty of Agriculture Ain Shams University ~2577/

APPROVAL SHEET

PHYSIOLOGICAL STUDIES ON ADAPTIVE MECHANISM RELATED TO SALT TOLERANCE IN SOME VEGETABLE CROPS

By

YOMNA IBRAHIM HASSANEEN HELMY

B.Sc. IN HORTICULTURE, CAIRO UNIVERSITY, 1975.
M.Sc. IN HORTICULTURE, AIN SHAMS UNIVERSITY, 1986.

MA Wally

This thesis for Ph.D. degree has been approved by:

Prof.Dr. MAHER WALLY

Prof. of Vegetable Crops.

Prof. Dr. MOHAMED S. El-BELTAGY

Prof. of Vegetable Crops.

Prof.Dr. MOHAMED ABDEL-MAKSOUD

Prof. of Vegetable Crops.

Date of examination: 11/6/1992

PHYSIOLOGICAL STUDIES ON ADAPTIVE MECHANISM RELATED TO SALT TOLERANCE IN SOME VEGETABLE CROPS

By

YOMNA IBRAHIM HASSANEEN HELMY

B.Sc. IN HORTICULTURE, CAIRO UNIVERSITY, 1975. M.Sc. IN HORTICULTURE, AIN SHAMS UNIVERSITY, 1986.

Under the Supervision of:

Prof. Dr. MOHAMED ABDEL-MAKSOUD

Prof. of Vegetables, Fac. Agric. Ain Shams University.

Prof. Dr. ADEL S. El-BELTAGY

Prof. of Vegetables, Fac. Agric. Ain Shams University

Prof. Dr. AYMAN F. ABOU-HADID

Ass. Prof. of Vegetables, Fac. Agric. Ain Shams University

ABSTRACT

Two experiments were carried out during two successive seasons 1989 and 1990, in the glasshouse of protected cultivation project, Ministry Agriculture, Dokki, Giza, to investigate the effect of different levels of salinity, Ethrel and cobalt their interaction on two crops, (Lycopersicon esculentum Mill. c.v. Betc 86) cucumber (Cucumis sativus L. c.v. Beta Alpha). Different concentrations of Rashidi salt different concentration of Ethrel were used with or without cobalt ion. The aim of using cobalt ion was to study the possibility of reducing physiological process accompany salinity, hence increasing plants salt telerance by external application. The results showed that cobalt reduce the injuring effect of both salt and Ethrel on plant growth. There was a positive interaction between cobalt ion and salinity (Rashidi salt). It can be seen that sodium in leaves salinized tomato and cucumber plants increased due to salinity and decreased with cobalt.

It could be concluded that, the most beneficial effect of cobalt ion on growth of tomato and cucumber irrigated with saline water, is reducing the physiological processes and morphological changes accompany salinity.

Results were discussed in relation to the role of ethylene in the different crops used.

ACKNOWLEDGMENT

I would be honored to convey my deepest thanks and true gratitude to Prof. Dr. MOHAMED ABDEL-MAKSOUD, Professor of Vegetable Crops, Ain Shams University, for his true endeavors, advice, as well as his continuos and valuable guidance in this thesis.

My sincere gratitude to the Dr. A.S. EL-BELTAGY, Professor of Vegetable Crops, Department of Horticulture, Ain Shams University, and Prof. Dr. M.S. EL-BELTAGY, Professor of Vegetable Crops, Botany Dept., National Research Center, for planning, Supervising, and constructive guidance.

Great thanks are expressed as well to Dr. AYMAN ABOU-HADID Associate Professor of Vegetable Crops, Department of Horticulture, Ain Shams Univ. for his continuous advice and support throughout my thesis.

I also seize this great opportunity to express my special thanks to Dr. S.O. EL-ABD, Associate Professor of Vegetable Crops, Botany Dept., National Research Center on his serious assistance throughout my work.

Thanks to UNDP/FAO, Protected Cultivation Project, EGY/86/014 for the financial support.

Financially, may great thanks to the Botany Dept. at the National Research Center, for supporting during conducting the research.

CONTENTS

		Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
	2.1. Effect of salinity, Ethrel and cobalt ion on seed germination	3
	2.2. Effect of salinity on plant growth	6
	2.3. Effect of salinity on ethylene production	8
	2.4. Effect of cobalt ion on ethylene production of plant grown under saline of	condition9
	2.5. Effect of cobalt ion as an inhibitor of Ethylene biothynthies	11
	2.6. Effect of salinity on other endogenous growth substances	16
	2.7. Induction of salt tolerance	19
3.	MATERIALS AND METHODS	22
4.	RESULTS	31
	4.1. The effect of salinity, Ethrel and cobalt ion on seed germination	31
	4.2. The effect of salinity, Ethrel and cobalt ion on aspects of vegetative grow	<i>t</i> th
	4.2.1. Plant height	37
	4.2.2. Leaf number	37
	4.2.3. The effect of salinity, Ethrel and cobalt ion on tomato leaf angle	43
	4.3. Physiological measured:	48
	4.3.1. Effect of salt, Ethrel and cobalt ion on total chlorophyll content	50
	of cucumber and tomato plants	
	4.3.2. Ethylene production	55
	4.3.3. Effect of salinity, Ethrel and cobalt ion on dry weight: fresh	59
	weight ratio for cucumber and tomato plants.	
	4.3.4. Effect of salinity and Ethrel on transpiration for	61
	cucumber plants.	
	4.3.5. Ion accumulation.	66
	4.3.5.1. Sodium content.	66
	4.3.5.2. Potassium content.	71
	4.3.5.3 Calcium content.	7 6
5.	DISCUSSION	81
6.	SUMMARY AND COCLUSION	86
7.	REFERENCES.	92
8.	APPENDICES	112
8.	ARABIC SUMMARY	133

LIST OF TABLES

Ta	ble .	Page
1	Composition of sea-salt (Rashidi)	23
2	Effect of salinity, Ethrel and cobalt ion on germination percentage on	112
	cucumber seeds.	
3	Effect of salinity, Ethrel and cobalt ion on germination percentage on	114
	tomato seeds.	
4a	Effect of salinity, Ethrel and cobalt ion on germination rate index in	116
	cucumber seeds.	
4 b	Effect of salinity, Ethrel and cobalt ion on germination rate index in	116
	tomato seeds.	
5	Effect of salinity, Ethrel and cobalt ion on plant height in cucumber	117
6	Effect of salinity, Ethrel and cobalt ion on plant height in tomato	119
7	Effect of salinity, Ethrel and cobalt ion on leaves number in cucumber	121
8	Effect of salinity, Ethrel and cobalt ion on leaves number in tomato	123
9	Effect of salinity, Ethrel and cobalt ion on chlorophyll content in cucumber	125
10	Effect of salinity, Ethrel and cobalt ion on cholorophyll content in timato	127
11a	Number of times increasing of Ethylene evaluation by salt treatments	58
	in relative to control in cucumber	
11b	Number of times increasing of Ethylene evaluation by salt treatments	58
	in relative to control in tomato	
12a	Effect of salinity, Ethrel and cobalt on dry weight : fresh weight ratio	60
	in cucumber	
12b	Effect of salinity, Ethrel and cobalt on dry weight: fresh weight ratio	60
	in tomato	
13	Effect of salinity, Ethrel and cobalt on sodium, potassium and calcium	129
	in cucumber.	
14	Effect of salinity, Ethrel and cobalt on sodium, potassium and calcium	131
	in tomato.	

LIST OF FIGURES

Figure		Page
1	Main effect of salinity, Ethrel and cobalt ion on the germination percentage	
	of cucumber seed	33
2	Interaction effect between salinity, Ethrel and cobalt ion on the germination	
	percentage of cucumber seed	34
3	Main effect of salinity, Ethrel and cobalt ion on the germination percentage	
	of tomato seed	35
4	Interaction effect between salinity, Ethrel and cobalt ion on the germination	
	percentage of tomato seed	36
5	Main effect of salinity, Ethrel and cobalt ion on plant height	
	of cucumber plants	39
6	Interaction effect between salinity, Ethrel and cobalt ion on plant height	
	of cucumber plants	40
7	Main effect of salinity, Ethrel and cobalt ion on plant height	
	of tomato plants	41
8	Interaction effect between salinity, Ethrel and cobalt ion on plant height	
	of tomato plants	42
9	Main effect of salinity, Ethrel and cobalt ion on number of leaves	
	of cucumber plants	44
10	Interaction effect between salinity, Ethrel and cobalt ion on number of	
	leaves of cucumber plants	45
11	Main effect of salinity, Ethrel and cobalt ion on number of leaves	
	of tomato plants	46
12	Interaction effect between salinity, Ethrel and cobalt ion on number of	
	leaves of tomato plants	47
13	Main effect of salinity, Ethrel and cobalt ion on leaf angle of tomato plants	49
14	Main effect of salinity, Ethrel and cobalt ion on chlorophyll content	
	of cucumber plants	51
15	Interaction effect between salinity, Ethrel and cobalt ion on cholorophyll	
	content of cucumber plants	52
16	Main effect of salinity, Ethrel and cobalt ion on chlorophyll content	
	of tomato plants	53
17	Interaction effect between salinity, Ethrel and cobalt ion on cholorophyll	
	content of tomato plants	54
18	Main effect of salinity, Ethrel and cobalt ion on ethylene production	

Fig	ure	Page
	of cucumber plants	56
19	Main effect of salinity, Ethrel and cobalt ion on ethylene production	
	of tomato plants	57
20a	Air temperature at the day before treatment with Ethrel	63
20b	Air temperature at the day of treatment with Ethrel	63
20c	Air temperature at the day after treatment with Ethrel	63
21	Effect of salinity, Ethrel on leaf temperature in cucumber	64
22	Effect of salinity, Ethrel on leaf transpiration in cucumber	65
23	Main effect of salinity, Ethrel and cobalt ion on sodium content in	
	cucumber leaves	67
24	Interaction between salinity, Ethrel and cobalt ion on sodium ion content in	
	cucumber leaves	68
25	Main effect of salinity, Ethrel and cobalt ion on sodium ion content	
	in tomato leaves	69
26	Interaction effect between salinity, Ethrel and cobalt ion on sodium ion	
	content in tomato leveas	70
27	Main effect of salinity, Ethrel and cobalt ion on potassium ion content	
	in cucumber leaves	72
28	Interaction between salinity, Ethrel and cobalt ion on potassium ion content in	
	cucumber leaves	73
29	Main effect of salinity, Ethrel and cobalt ion on potassium ion content	
	in tomato leaves	74
30	Interaction effect between salinity, Ethrel and cobalt ion on potassium ion	
	content in tomato leveas	75
31	Main effect of salinity, Ethrel and cobalt ion on calcium ion content	
	in cucumber leaves	77
32	Interaction between salinity, Ethrel and cobalt ion on calcium ion content in	' '
	cucumber leaves	78
33	Main effect of salinity, Ethrel and cobalt ion on calcium ion content	, ,
	in tomato leaves	79
34	Interaction effect between salinity, Ethrel and cobalt ion on calcium ion	13
	content in tomato leaves	80
		UNJ.

INTRODUCTION

1. INTRODUCTION

The expansion of reclaimed land is increased yearly in Egypt.

One of the major problems in these areas, is finding varieties of crops suitable for the frequent adverse growing conditions of these lands. For this reason it is important to conduct studies on different lines of crops, that can be planted in such areas, and to select the most suitable plants in terms of total production and yield under the conditions prevailing.

The limited supply of irrigation water particularly in the arid and semi-arid regions, is the most important factor for agricultural expansion, it creates a severe problem to plant production. This problem is accompaned by the fact that most of the irrigation water is saline.

It is well recognized that salinity has a detrimental effect on the growth of many plants. This aspect has been studied by many investigators (Cale et al., 1977; Garg and Garg, 1980; Petolino and Leone, 1980; Sameni et al., 1980; Helal and Mengel, 1981).

One of the most important differences between plants, which are either resistant or sensitive to salt stress, may be in plant hormone status. Retardation of growth may be brought about by either an increase in inhibitors accumulated, and/or a decrease in promotive compounds under stressed conditions, ultimately affecting total plant growth and development (Ahoroni ,1978; Starck and Karwowska, 1978; Aloni and Pressman, 1981). However, little attention has been paid to find out the possible role of plant hormones as to the response of plants to salinity stress.

Salt tolerance has been reported as an adaptation phenomenon. Strogonove (1962) refers to biological salt tolerances as the ability of plants to survive under accumulated low concentrations of salt in the dry matter and to complete their life cycle, irrespective of whether such plants are inhibited or not as to growth, development and yield.

In agronomical terms, salt tolerance means that plants can grow well and complete their life cycle and produce satisfactory yields. Hence, studies on the interrelationships between salinity, water stress and ethylene may be valued in extending our knowledge of germination under saline conditions.

Therefore, the goal of this research is to study major physiological and morphological changes that accompany salinization of some vegetable crops.

This may help the plant breeder in early screening for varieties and cultivars capable of resisting salinity.

REVIEW OF LITERATURE

2. REVIEW OF LITERATURE

2.1. Effect of salinity, Ethrel and cobalt on seed germination :

were thought to be more sensitive salinity during germination than at later stages of development because germination failures are prevalent salt-affected soils. Seed germination complicated process, involving many individual reactions, interactions and phases. Each component of the germination process is affected by one or more environmental factors, such as temperature, light and water potentials. Seed germination is initiated with passive uptake of water and active water uptake by seed.

The lack of salt tolerance during germination, was reported by **Bernstein and Hayward (1958)** to be similar in several species with the exception of beet which were much less sensitive during germination and early seedling growth.

The mechanisms of resistance appear to be different in seedlings and mature plants (Levitt, 1972). The apparent greater sensitivity during germination in the field, was partially attributed to (Bernstein 1975) as to the tendency of salts to accumulate near the soil surface because of evaporation, hence increasing the salinity concentration of the residual soil water.