POLLUTION OF CERTAIN CEREAL FORAGE CROPS WITH FUNGAL PATHOGENS IN EGYPT

 $\mathbf{B}\mathbf{Y}$

Fawzeia Mohamed Bekheet El-Sayed B.Sc., Agric., Ain Shams University 1975

0

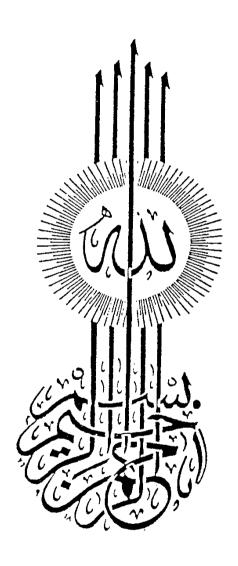
Thesis

Submitted in Partial Fulfilment of The Requirements For The Degree of

Master of Science

Ιn

ENVIRONMENTAL SCIENCES


Department of Agricultural Sciences

(Plant Pathology)

From

Institute of Environmental Studies & Research
Ain-Shams University

1990

APPROVAL SHEET

Name :

Fawzeia Mohamed Bekheet El-Sayed

Title :

Pollution of Certain Cereal Forage Crops With

Fungal Pathogens in Egypt .

This Thesis for the M.Sc. Degree in

Environmental Sciences (Agricultural Sciences.

Plant Pathology) has been approved by : -

Pref. of plant puthology

Prof. Dr. Mahamed Fahmy Alder-Reheim M.F. Abdel-Rahm

Plat of plant pathology
Not Dr. Hohamed Mahmoul 31-yet 21 17/11/2/

Metrice Mont pathology

Committee in Charge

Date: / / 1990

ACKNOWLEDGMENT

The author wishes to express her deep gratitudes to her professors , Dr. M.M. E1-Zayat , Professor of Plant Pathology , Faculty of Agriculture and Head of The Agricultural Sciences Department of the Institute of the Environmental Studies and Research , Ain Shams University; and Dr. I.M. Mansour , Professor of Plant Pathology and Head of Maize , Sugar Crops and Cereal Forage Crops Diseases Section , Plant Pathology Research Institute of the Agricultural Research Center , for supervising this attractive study . That is pollution caused by certain pathogenic fungi in certain cereal forage crops .

Thanks are due to Dr. Maysa A. Moursy, Researcher in Plant Pathology for her help in experimentation, data and manuscript preparation and to Dr. M.N.D. Abdel-Fattah, Researcher in Plant Pathology for close guidance and encouragment; both in the Maize, Sugar Crops and Cereal Forage Crops Diseases Section of the Plant Pathology Research Institute, A.R.C.

Thanks to Dr. Ibtisam El-Sherif , Head of the Mycology Research and Survey of The Plant Diseases Section and Mr. Salah El-Din Yousef , Postharvest diseases Section of the Plant Pathology Research Institute for scientific help .

She acknowledges the help and facilities provided

by her other professors and colleagues in the Maize

Sugar Crops and Cereal Forage Crops Diseases Section,

Plant Pathology Research Institute, A.R.C.

C O N T E N T S

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
Hosts and Diseases	3
Fungi and Diseases	3
A- Helminthosporium spp	4
B- Curvularia sp.	5
C- <u>Fusarium</u> sp.	6
D- <u>Marasmiellus</u> sp	8
Ecology , Pathogen and Disease Interaction	9
1. Diseases incited by Helmithosporia	9
2. Diseases incited by Curvularia sp	12
3. Diseases incited by Fusaria	13
Pollution In Forage Crops	15
A- Toxins production and effects	15
B- Toxins produced by fungi under investigation.	18
1- Helminthosporium spp	19
2- <u>Curvularia</u> spp . 	20
3- <u>Fusarium</u> spp.	21
C- Chemical control	22
1- Helminthosporium spp	22
2- <u>Fusarium</u> spp.	24
3- <u>Curvularia</u> spp	25
4- Marasmiellus sp.	26
MATERIALS AND METHODS	2 7
Irrigation Systems	27
Diseases Samples And Isolation	29
1- Leaf spots	29
2- Root and stalk-rots	29
3- Blighted seedlings	30

	Page
Identification Of Isolated Fungi	30
Pathogenicity Tests : ~	30
1- Stalk-and root rots	31
2- Leaf spots	3 2
Seeds And Planting	33
Disease Readings	33
A-1- Seedling blight	33
A-2- Root-and stalk-rot	34
A-3- Leaf spot	34
Statistical Analysis	3 4
B - Reisolation	3 4
Physiological And Cultural Studies	34
1- Growth on agar media	3 4
2- Effect of temperature	3 7
3- Effect of atmospheric relative humidity	37
Pollution in Forage Crops	38
A- Host specific toxins,	38
Treatments of host-specific toxins bioassay.	40
B- Mycotoxins	43
In vitro Chemical Control	44
EXPERIMENTAL RESULTS :	4.7
Disease	4.7
A- Leaf Spots	4.7
B- Root-and stalk-rots	4 9
Isolation Of The Causal Agents	5 4
Λ- Leaf spots	54
B- Root-and stalk-rots	54
Disease Survey	59
Meteerwin icai Data	59
Pathogenicity Tests	61
l- Leaf spots	6 1
2- Seedling blight and root-and stalk-rot	7 0
3- Pathogenicity of Helminthosporium spp. in	
infested soil	78

- iii -

	Page
Identification Of Pathogenic Isolates	78
A- Helminthosporium spp	78
B- Fusarium spp.	81
C- Marasmiellus and Curvularia ,	81
Cultural and Morphological Characters	82
Growth on agar media	82
A- <u>Helminthosporium</u> spp	82
B- Root-and stalk-rot fungi	82
Effect of Temperature On Mycelial Growth	85
A- Helminthosporium spp	85
B- Root-and stalk-rot fungi	88
Effect Of Atmospheric Relative Humidity	88
A- Effect on Helminthosporium spp	88
B- Effect on root-and stalk-rot fungi	92
Spore Germination	9 2
Pollution in Cereal Forage Crops	96
A- Host- specific toxins	96
l- Filtrate -irrigated-plants	96
2- Dipping of transplants in culture filtrate.	100
3- Effect of filtrate-seed-dipped on germinati	on.103
4- Filtrate sprayed-potted plants	108
5- Brine shrimp bioassay	109
B- Production of mycotoxins	109
C- In Vitro Chemical Control	112
A- Helminthosporium spp	112
B- Root-and stalk-rot fungi	115
DISCUSSION	117
Sources of Isolates	119
Natural Disease Severity	119
Pathologenicity Tests	121
Leaf spot fungi	120
Seedling blight and root-and stalk-rots	122
Cultural and Mprphological studies	123

	<u>Page</u>
Growth on agar media	123
Effect of temperature	124
Effect of atmospheric relative humidity	125
Spore germination of Helmintosporium spp	126
Pollution In Forage Crops	1 26
A- Host specific toxins	126
B- Production of mycotoxins	129
C- In vitro chemical Control	129
S UMMA RY	132
Pathogenicity Tests	134
Cultural and Morphological Studies	135
Pollution in Cereal Forage Crops	136
Host specific toxins	136
Mycotoxins production	137
In vitro chemical control	137
REFERENCES	139

ARABIC SUMMARY .

INTRODUCTION

Cereal forage Crops has been introduced in Egypt on the scale of commercial consumption for cattle feed during the last two decades. However, they are still grown in small acreage but in most of the growing areas in the country during summer season. They are used as plant crop and ratoons and several cuts are taken from the crop. They are planted under variable climatic conditions either geographically or within the same area during changable weather. They are either surface irrigated in the old lands or sprinkler irrigated in the new reclamed lands. The lands in which they are grown are of different soil types and conditions, hence differ in their microflora.

Under this wide range of climatic conditions, cereal forage crops are subjected to variable and several types of pathogenic microorganisms. These organisms affect either the shoot or the root system and cause different diseases. Pathogen behaviour, disease effect and host reaction are in a dynamic interaction affected by and correlated with the ecology factors mentioned above.

Cereal forage crops, in Egypt are attacked by leaf, root and stalk pathogenic fungi. These fungi pollute the crop either directly by their toxic metabolites which lower the crop yield and quality or indirectly through

the use of chemicals to control them and the resulting residues are hazard to animal and man .

The trial to study the contamination of certain cereal forage crops with pathogenic fungi in Egypt aimed, for the first time, to throw lights on the complex of the forage crops, disease agents, and ecology interaction and the process of pollution in the crop.

_ 3 _

REVIEW OF LITERATURE

Hosts and Diseases :

In the work embodied in these investigations, only certain fungal leaf spots, stalk-and root-rots of forage crops (millet and sorghum) were considered.

Dick son(1956) reported several diseases attacking millet crops. He mentioned that several species of Helminthosporium have been reported on the millets and closely related species.

Sorghum, Sudan grass and Johnson grass diseases were reviewed by Dickson (1956). The genus Sorghum contains annual sorghum (sweet sorghum, grain sorghum, broom corn and Sudan grass; and perennial sorghum or Johnson grass. The crop is cultivated for grain, forage and juice. The physiological anatomy of the sorghums is similar to corn. The seedling development and susceptibility to disease is very similar in the two. Seedling blights and root-rots are important in reducing stands and plant vigor. Among the diseases listed by Dickson are seed rot, seedling blight and root-rot caused by Pythium spp. and other fungi; Gibberella seedling blight and stalk rot caused by Gibberella zeae and Gibberella fujikuroi or Fusarium roseum f. cerealis and F. moniliforme; Helminthosporium leaf blight caused

_ 4 _

by Helminthosporium turcicum; Anthracnose caused by

Colletotrichum spp., Milo root-rot caused by Peroconia

circinata, Charcoal rot caused by Macrophomina phaseoli

and other diseases and smuts.

The author, reported that the corn leaf blight caused by <u>H</u>. <u>turcicum</u> occurs sparingly on the sorghums and very extensively on Sudan and Johnson grass.

Considerable defoliation results on these two grass sorghums. The lesions are similar to those on corn except for the development of more pigmentation around the margin of the lesions in the sorghum group. Certain of the physiologic races of the parasite on corn infect the sorghum group. The sorghum races of the fungus apparently do not infect corn naturally. According to Chilton (1940) the fungus is seed-borne as well as carried over on crop residue.

Fungi and Diseases :

A- Helminthosporium spp. :

Wallin and Loonan (1973) mentioned that a <u>Helminthos-porium</u> sp. resembling, but morphologically different from,

H. <u>maydis</u> (<u>Cochliobolus heterostrophus</u>) race T was isolated from a maize leaf. Economic damage was not observed. The fungus produced symptoms resembling southern leaf blight.

_ 5 _

Hooker (1974) showed that data obtained for lesion sizes proved that 87 maize hybrids in the seedling stage varied in reaction to inoculation with an Helminthosporium sp. Small lesion size of inbred parents tended to be dominant to large lesion size in hybrids. The reaction of corn inbred lines inoculated in the field with an isolate similar pathogenically to Helminthosporium (Cochliobolus) carbonum race 2 varied in both lesion length and percentage leaf tissue infected, the two reactions were positively correlated.

Nikitina and Kurtseva (1982) mentioned that <u>H. panici-miliacei</u> attacks reproductive organs of <u>Panicum miliaceum</u> at flowering to grain formation. On inoculation of embryos, the fungus causes blackening and brittleness of grain. From the inflorescence, it may spread to cause leaf spot.

Gilchrist, et al.(1984) isolated a Helminthosporium sp. from severe leaf blight infected wheat. It was able to reproduce the characteristic symptoms of the disease: necrotic, oval ellypsoid spots surrounded by a yellowish halo. The fungus was identified as Pyrenophora triticirepentis (= H. tritici - repentis).

B - Curvularia spp. :

Komoto, et al. (1980) recorded a new disease of Sudan grass caused by $\underline{\text{Curvularia}}$ lunata and C. intermedia. The