MECHANIZED RICE TRANSPLANTING AND FACTORS AFFECTING ITS PERFORMANCE

By AHMED EMAM HUSSEIN

A thesis submitted in partial fulfillment

Of
The requirement for the degree of
MASTER OF SCIENCE

أَم التسجيق مبكود بيلمبا مسيد الم التوثيق المليكروبيل

131.33 A.E

In
Agricultural Science
(Agricultural Mechanization)

47751

Department of Agricultural Mechanization Faculty of Agriculture Ain-Shams University.

1993

APPROVAL SHEET

MECHANIZED RICE TRANSPLATING AND FACTORS AFFECTING ITS PERFORMANCE

BY AHMED EMAM HUSSEIN

B.Sc.Agr.Sci.(Agric.Mechanization)
Cairo Univ.1983

This thesis for M.Sc. Degree has been approved by:

Dr: El. Toni Mohamed Ali El Toni Ele Toni Assist prof. Soil Dep t.
Ain - Shams University

te of examination: 3/3/1993

MECHANIZED RICE TRANSPLANTING AND FACTORS AFFECTING ITS PERFORMANCE

By AHMED EMAM HUSSEIN

B.Sc. Agric. .Sci. Soil Sci; (Mechanization) Faculty of Agric., Cairo Univ., 1983

> under the supervision of Prof. Dr .M . N. EL – Awady

Head of Agric. Mech. Dept., Fac. of Agric., Ain-Shams Univ.
Prof.Dr. A. F. EL - Sahrigi
Director Of Agric. Eng. Res. Institute.
Dr: M.M. Hegazi

Assoc. Prof., Agric. Mech. Dept., Fac. of Agric., Ain-Shams Univ.

Abstract

The aim of this work is to study the factors affecting transplanting for different kinds of transplanters to reach for optimum conditions of transplanting.

Obtained results indicate the best conditions of transplanting to produce a maximum yield of crop as follows:-

- a-Depth of water during transplanting ranges between 2-3 cm.
- b-Cone plumb penetrating depth is 8 cm.
- c-Depth of firm pan ranges between 8 12 cm.

The ratios of missing and deffective hills at optimum conditions were minimum at values of (1.2, and 3%), resp.

ACKNOWLEDGEMENT

My warmest thanks are due to Prof. Dr. Mohamed Nabil EL-Awady, Head of the Agric. Mech. Dept., Faculty of Agric., Ain - Shams University for his continuous scientific help, valuable consultation, generous encouragement and for revising the manuscript. The author wishes also to express his deepest gratitudes and great indebtness to Prof. Dr. Ahmed F. EL-Sahrigi, Director of Agric. Eng. Res. Inst., (AERI), Agric. Res. Center, for his supervission, assistance in providing the equipment, facilities, and constructive criticism, and sustained interest as a source of constant encouragement during undertaking this investigation. I am also indebted to him for going very critically through the manuscript.

The author wishes also to express his appreciation and sincere gratitude to Dr. Mahmoud. M. Hegazi, Assoc. Prof. of Agric. Mech, Fac. of Agric., Ain-Shams Univ. for his supervission, excellent guidance, valuble assistance and scientific help.

Deep thanks and sincere appreciation are expressed to Prof.Dr. M.N. Saif EL-Yazal, Deputy of (AERI), Agric. Res.

Center, for offering facilities and scientific help.

I would like to express my deep thanks and appreciations to Rice Mechanization Center at Meet EL-Deeba (Kafr EL-Sheikh), for their help in providing the equipment, valuable assistance and scientific aid.

Deep thank and sincere appreciation are expressed to Dr. Hassan A. Abdel-Mawla Researcher and supervisor of Machinery Design Department of (AERI), Agric. Res. Center, for offering facilities and scientific help.

TABLE OF CONTENTS

	ī	PAGE NO.
1- IN	TRODUCTION	ı
2- RE	VIEW OF LITERATURE	4
2.1.	Transplanting systems	4
2.2.	Transplanting machines	4
2.3.	Development of transplanting system	22
2.3.1.	Transplanters with picking and planting fingers	s. 28
2.3.a	Transplanters using washed - root seedling	29
2.3.b.	Transplanters using non - washed - root seedling	ng 29°
2.4.	Effect of nursery conditions, transplanters on	29
2 .5. a .	Seedling system	34
b.	Performance	34
3.	MATERIALS AND METHODS	40
3.1.	Equipment	40
3.1.1.	Transplanters	40
3.1.2.	Green houses	40
3.1.3.	Distribution of dry seeds in the tray	46
3.2.	Materials	46
3.2.1	Plastic trays	46
3 - 2.2	Soil	46
2 1 2	Tunovimental eren	46

<u>II MET</u>	Hons :-	53
3.4.	Seeds preparation	53
3.5.	Sowing and seedling	53
3.6.	Adjustment of rice transplanters	54
3.7.	Experimental procedure	55
3.7.1.	Experiment No. one	55
3.7.2.	Experiment No. two	55
3.7.3.	Experiment No. three	57
3.7.4.	Experiment No. four	57
4. RES	SULTS AND DISCUSSION	65
4.1.	Factors affecting the performance of the	
	transplanters	65
4.1.1.	Effect of the height of the seedling mat	65
4.1.2.	Effect of field conditions	67
4.1.3.	Effect of machine adjustment	71
4.1.3.	1. Effect of seedling reciprocating speed of rac	k
	per minute	71
4.1.3.2	2. Effect of finger strokes per minute	72
4.1.4.	Effect of slippage of traction system on the	
	performance of the transplanter	75

4-1-4-1.	Hill spacing	75
4-1-4-2.	Plowing depth	76
4-2.	Efficiency of mechanical transplanting	88
4-3.	Effect of different seedling reciprocating speeds of	
	racks of different transplanters on field	
	efficiency, missing rate, and total yield	90
4-4.	Effect of different seedling reciprocating speeds of	
	rack on different transplanters in different nursery	
	soil	92
4-5.	Cost of mechanical transplanting	93
4-5-1.	Effect of different nursery soils and transplanting	
	systems on yield cost	97
5.	SUMMARY AND CONCLUSIONS	100
6.	LITERATURE	105
7.	APPENDICES	110
8.	ARABIC SUMMARY	119

LIST OF TABLES

Table No.		Page	No.
1	Specifications of hand and mount-driven		
	rice transplanters		-45
2	Soil type of nursery		-49
3	Some physical properties of rice variety		
	Giza 175		•50
4	Effect of field conditions on missing		
	and deffective hills using a plowing		
	depth of 15cm		.69
5	Relation of planting accuracy and		
	adjustment of transplanting, finger, and		
	seedling tray speeds		.7.4
6	Effect of slippage of traction system on		
	the performance of the transplanter		87
7	Field performance of different rice		
	transplanters		.8.9
8	Effect of different seedling tray speeds		
	and nursery soil on field efficiency,		
	missing rate and production of yield with		
	different transplanters		
9	Costs of mechanical transplanting	• • • • •	98
10	Effect of different soil nurseries and		
	transplanting systems on yield and cost		~ ~
	under optimum field speeds		

LIST OF FIGURES

Figure	No. Page No.	
1	Side view of a Philippino transplaniting machine	7
2	IRRI manually operate 5- row paddy transplanter	10
3	Yanmar YP220 walking-type 2-row rice transplanter	11
4	Kubota SPS-28 walking-type 2-row rice transplanter.	13
5 .	YP-400 walking type 4-row rice transplanter	14
6	Front-mounted riding type 8-row rice transplanter	15
7	Rear-mounted riding type rice transplanter	16
8	Function of crank type planting mechanism	20
9	Walking type 4-row rice transplanter	41
10	Mount-driven type 6-row rice Japaness transplanter.	42
11	Mount-driven type 8-row rice Japaness transplanter.	43
12	IRRI IR5 rice transplanter	44
13	Sowing apparatus	47
14	Seedling tray for the Japaness system	48
15	Cone plumb	52
16	Wooden puddler	52
17	Design of the experiment	56
18	The relationship between seedling conditions in	
	tray	66
19	The relationship between conditions in field	68

20	The relationship between the finger stroke
	speed/min. and the studied parameters (4-row
	transplnater.)
21	Effect of finger strokes per minute and missing
	hills percentage, vacant ratio per hill during
	transplanting
22	Effect of slippage of traction system on the
	performance of the transplanter (4-row)
23	The relationship between the finger stroke
	speed/min and the studied parameters. (6-row)80
24	Effect of finger operation, strokes per minute,
	missing hills percentage, and ratio of vacant
	hills during transplanting (6-row transp.)81
25	Effect of slipping of traction system on the
	performance of the (6-row) transplanter82
26	The relationship between the finger stroke
	speed / min. and the studied parameters (8-row
	transplanter)
27	Effect of slippage of traction system on the
	performance of the (8-row transplanter)84
28	Effect of finger strokes per min.and missing
	hills percentage, vacant ratio per hill during 8-
	row transplanting 85

29	The relationship between plowing depth and
	slippage ratio 86
30	Effect of different seedling speeds and
	transplanting system on yield under nursery soil
	(4-row transp.)94
31	Effect of different seedling reciprocating speeds
	and transplanting system on yield under nursery
	soil (6-row transp.)95
32	Effect of different seedling reciprocating speeds
	and transplanting system on yield under nursery
	soil (8-row transp.)96

INTRODUCTION

1. INTRODUTION

Rice production depends on machines to transplant quickly and efficiently with a minimum labor requirements. In Egypt, rice is considered one of the major crops, since it is second to cotton in its export potential to obtain foreign currency. The rice growing area in Egypt is estimated at 1099659 fed., according to Central Agancy for Agricultural Economy and Statistics, (CAAES, 1991). Rice farming in Egypt is by large found in the Nile Delta. The five provinces of Dakahlia, Kafr EL-Sheikh, Beheira, Sharkia and Gharbia Governorates account for 95% of the total area planted with paddy, with the remaining area found in the north of Beni Sweif and parts of Fayum basin and Dakhla and kharga Oases (Hossary et al., 1980).

In Egypt rice must be transplanted by the end of april.

It was found that the less the growing cost is, the greater the rice area will be.

It was also found that labour and animal work in rice planting have surpassed the logical stage and evolved into a diminishing return stage.

The shortage in hand labor in Egyptian farms has become a pressing problem in the recent decade. This problem is mainly ascribed to the increasing workers - migration from the rural areas to other sectors of increased income. This