BIOCHEMICAL STUDIES ON SOME GAMMA IRRADIATED VEGETABLE SEEDS DURING SEEDLING STAGE

 $\mathcal{B}y$

SOMAYA ZAKARIA ABO BAKER

A thesis submitted in partial fuflillment

σť

the requirements for the degree of

master of Science

in

Agriculture

(Agric. Biochemistry)

Department of Biochemistry
Faculty of Agriculture
Ain Shams University
(1993)

APPROVAL SHEET

BIOCHEMICAL STUDIES ON SOME

GAMMA IRRADIATED VEGETABLE SEEDS

DURING SEEDLING STAGE

ŵ.j

SOMAYA ZAKARIA ABO BAKER

B. Sc. Agric. Food Sceince and Technology.

Ain Shams University, 1882

This Thesis for M. Sc. Degree has been, approved by

3 5 Eliabatus

LE Flaskin

Prof. Dr. B.S. El-TAHAWI

Prof. of Biochem. Fac. of Agric. Minofia Univ., Shepin El-Kem

Dr. E.A. SHERIF

Ass. Prof. of Biochem., Fuc. of Agric., Air. Shams Univ.

Prof. Dr. K.R.F. HUSSEIN

Prof. of Biochem , Fac of Agric., Ain Shams Univ.

Date of Examination: 27 - 1 1993

BIOCHEMICAL STUDIES ON SOME GAMMA IRRADIATED VEGETABLE SEEDS DURING SEEDLING STAGE

By

SOMAYA ZAKARIA ABO BAKER

B. Sc. Agric. (Food Sceince and Technology)
Ain Shams University, 1982

Under the Supervison of

Prof. Dr. HUSSEIN, K.R.F Prof. of Biochemistry. Ain Shams Univ.

Dr. Afify, W.M. Ass. Prof. of Biochemistry, Ain Shams Univ.

ABSTRACT

Gamma irradiation (0,10, 20 and 30 Gy) of Cucumber bita alpha (var I and var II) and Cucurbita pepo var I and II induced an increase in indole acetic acid oxidase, acid phosphatase, and peroxidase activities, and a marked decline in the activity of phenylalanine ammonia lyase (PAL) of seedlings.

The soluble protein content decreased with age in both varieties of each species and increased with gamma irridation treatments.

Total soluble carbohydrates, and reducing sugars of cucumber and cucurbita seedlings increased with age and due to gamma irradiation treatments.

Free amino acids content of both varieties of cucumber and cucurbita in 5 and 10 day old seedlings, decreased with age and incresed due gamma irradiation treatments.

Proline content decreased in both varieties of cucumber with age, but increase with gamma irradiation treatments. While, proline content increased in both varieties of cucurbita with age and gamma irradiation treatments.

Central Library - Ain Shams University

Phenolic compounds content increased in both varieties of cucumber with age and gamma irradiation treatments. But in cucurbita varieties it decreased with age and increased due to gamma irradiation treatments.

Polyacrylamide gel electrophoresis (PAGE), showed changes in protein profile of shoot and root of cucumber seedlings var. I with time and gamma irradiation treatments. Also cucumber seedlings var II, showed marked changes in electrophoretic pattern included the number and intensity of protein bands.

Cucurbita seedlings var. I showed that no changes in protein profile with age but gamma irradiation treatments induced marked changes. While, cucurbita seedlings var. II expressed noticeable changes in protein profile with age and gamma irradiation treatments.

Polyacrylamide gel electrophoresis of peroxidase isozymes showed changes owing to gamma irradiation treatments, but no change with time in cucumber root seedlings var I was obtained. In cucumber shoot seedlings var. I peroxidase isozymes increased with age and gamma irradiated treatments. While, cucumber root seedlings var. II isozymes decreased with age, but in shoot seedlings no changes in isozyme number were observed with age or owing to gamma irradiation treatments.

Peroxidase isozymes number of cucubita seedlings var I increased with age and decreased owing to gamma irradiation treatments, but in cucurbita seedlings var II peroxidase isozyme band decreased with time or gamma irradiation treatment.

SDS-polyacrylamide gel electrophoresis showed no change in protein profile, but the number of band decreased with age and increased owing to gamma irradiation treatments in cucumber seedlings var. I. But in cucumber seedlings var II, no changes in electrophoretic pattern were obtained. While the number of protein bands decreased with age and owing to gamma irradiation treatments.

The two varieties of cucurebita (var I and var II) showed no change in electrophoretic. Pattern of protein decreased in the number of protein bands with age and owing to gamma irradiation treatments.

ACKNOWLEDGMENT

The author wishes to express her deepest graticude and appreciation to **Prof. Dr. K.R.F. HUSSIEN** Professor of Biochemistry. Faculty of Agriculture, Ain Shams University for his supervision, guidance, valuable suggestion and encouragement throughout the course of this investigation.

The author is deeply grateful to Dr. W.M. AFIFY, Assistant Professor of Biochemistry, Faculty of Agriculture. Ain Shams University for his help and hind cooperation during the course of this study.

Much gratified is due to **Dr. M.M. SHAMS EL-DIN,**Assistant Professor of Biochemistry, Faculty of Agriculture, Ain
Shams University.

Thanks are also due to **Dr. R. Uoasry**, Professor of Animal Nutrition, National Centr of Research and Radiation Technology.

Many thanks should be offered to staff members of Biochemistry Department for their valuable ecouragement.

CONTENTS

			Page
	1.	Abstract	
	2.	Acknowledgment	
	3.	List of tables.	
	4.	List of figures	
I.	In	troduction	
II.	Re	view of Literature	1
	1.	Effect of irradiation on seedling growth	1
	2.	Effect of gamma rays on protein and amino acids	6
	3.	Effect of gamma irradiation on the carbohydrates	17
	4.	Effect of gamma rays on phenolic compounds	22
	5.	Effect of gamma irradiation on enzymes	23
		a) Acid phosphatase	23
		b) Indole acetic acid oxidase	24
		c) Peroxidase	27
		d) Phenylalanine ammonia lyase	37
III.	Ma	nterials and Methods	4 0
	1.7	Materials	40
	$\mathbf{A})$	Sampling	4 0
	B)	Samples Preparation	40
		1. Irradiation	40

			Page
	2.	Germination	41
	3.	Protein extraction	41
	4.	Fractionation of total soluble sugars and free	
		amino acids	41
		A) Soluble sugars	41
		B) Pree amino acids	42
	5.	Extraction of phenol compounds	43
$M\epsilon$	etho	ds of analysis	43
1.	De	termination of soluble protein	43
2.	De	termination of free sugars	43
3.	De	termination of free amino acids	44
4.	De	termination of free proline	44
5.	De	termination of phenol compounds	45
6.	De	termination of enzymes activity.	46
	a)	Acid phosphatase.	46
	b)	Indole acetic acid oxidase	47
	c)	Peroxidase	47
	d)	Phenylalanine ammonia lyase	48
7.	Ele	ectrophoresis analysis	49
	a)	PAGE electrophoresis of proteins	49
	b)	PAGE of peroxidase	51
	c)	SDS-PAGE electrophoresis	52

			Page
IV.	Re	esults and Discussion	56
	1.	The soluble protein contents	56
		a) Cucumber vars. I and II	56
		b) Cucurbita vars I. and II	59
	2.	Soluble sugars content	63
		a) Cucumber vars I. and II	63
		b) Cucurbita vars I. and II	6 6
	3.	Free amino acids content	70
		a) Cucumber vars I. and II	70
		b) Cucurbita vars I. and II	73
	4.	Proline content	75
		a) Cucumber vars I. and II	75
		b) Cucurbita vars I. and II	77
	5.	Phenols compounds content	80
		a) Cucumber vars I. and II	80
		b) Cucurbita vars I. and II	82
	6.	Enzymes activity	84
		A) Acid phosphatase	84
		a) Cucumber vars I. and II	84
		b) Cucurbita vars I. and II	87
		B) Indole acetic acid (IAA) oxidase	9 0
		a) Cucumber vars I. and II	90
		b: Cumurhita ware I and II	00

		rage
	C) Peroxidase	97
	1. Peroxidase activity	97
	a) Cucumber vars I. and II	97
	b) Cucurbita vars I. and II	99
	D) PAL activity	102
	a) Cucumber vars I. and II.	102
	b) Cucurbita vars I. and II	104
	7. Electrophoresis analysis	106
	A) PAGE of extract protein	106
	a) Cucumber var I	106
	b) Cucumber var II	108
	c) Curcurbita vars I. and II	112
	B) Peroxidase electrophoresis	115
	a) Cucumber var I	115
	b Cucumber var II	118
	c) Curcurbita vars I. and II	121
	C) SDS - PAGE electrophoresis	126
	a) Cucumber var I	126
	b) Cucumber var. II	127
	c) Cucurbita var I	129
	d) Cucurbita var II	13 0
VI.	English Summary	135
V.	References	142
VI	Arabie Summary	

LIST OF TABLE

		Page
1.	Effect of gamma irradiation on tris borate soluble protein	
	of cucumber beta alpha seedlings	58
2.	Effect of gamma irradiation on tris borate soluble protein	
	of cucurbita pepo seedlings	60
3.	Effect of gamma irradiation on soluble carbohydrates of	
	cucumber beta alpha seedlings	65
4.	Effect of gamma irradiation on soluble carbohydrates of	
	cucurbita pepo seedlings	69
5.	Effect of gamma irradiation on total free amino acids	
	content of cucumber beta alpha seedlings	72
6.	Effect of gamma irradiation on total free amino acids	
	content of cucurbita pepo seedlings	74
7.	Effect of gamma irradiation on proline content of	
	cucumber beta alpha seedlings	76
8.	Effect of gamma irradiation on proline content of	
	cucurbita pepo seedlings	79
9.	Effect of gamma irradiation on phenolic compounds	
	content of cucumber beta alpha seedlings	81
10.	Effect of gamma irradiation on phenolic compounds	
	content of curcrubita pepo seedlings	83

		Page
11.	Effect of gamma irradiation on acid phosphatase activity	
	of cucumber beta alpha seedlings	85
12.	Effect of gamma irradiation on acid phosphatase activity	
	of cucurbita pepo seedlings	89
13.	Effect of gamma irradiation on IAA oxidase activity of	
	cucumber beta alpha seedlings	91
14.	Effect of gamma irradiation on IAA oxidase activity of	
	cucurbita pepo seedlings	94
15.	Effect of gamma irradiation on peroxidase activity of	
	cucumber beta alpha seedlings	98
16.	Effect of gamma irradiation on peroxidase activity of	
	cucurbita pepo seedlings	101
17.	Effect of gamma irradiation on PAL activity of cucumber	
	beta alpha seedlings	103
18.	Effect of gamma irradiation on PAL activity of cucurbita	
	pepo seedlings	105
19.	Relative composition percentage of the protein bands	
	extracted from cucumber bita alpha seedlings Var. I	108
20.	Relative composition percentage of the protein bands	
	extracted from cucumber beta alpha seedlings var. II	111
21.	Relative composition percentage of the protein bands	
	extracted from cucurbita pepo seedlings var I and II	114

		rage
22.	Relative composition percentage of the peroxicase bands	
	exracted from cucumber beta alpha seedlings var I	117
23.	Relative composition percentage of the peroxidase bands	
	extracted from cucumber beta alpha seedlings var II	120
24.	Relative composition percentage of peroxidase bands	
	extracted from cucurbita pepo seedlings var I and II	123

LIST OF FIGURES

		Page
1.	SDS-PaGE of the extracted of cucumber var I and var II.	128
2.	SD-PaGE of the extracted of cucurbita vr I and var II	132

I. INTRODUCTION