COMPARATIVE STUDIES ON THE CARNIOLAN HONEY BEE RACE AND ITS CROSSES

ВY

Adel Mohamed Mahmoud Elbassioun

ouny

A thesis submitted in partial fulfillment

of

The requirements for the degree of

DOCTOR OF PHILOSOPHY

In

AGRICULTURAL SCIENCE

(ENTOMOLOGY)

<u>638.1</u> AM

Department of Plant Protection
Faculty of Agriculture
Ain Shams University

1992

APPROVAL SHEET

COMPARATIVE STUDIES ON THE CARNIOLAN HONEY BEE RACE AND ITS CROSSES

BY

Adel Mohamed Mahmoud Elbassiouny

B.Sc. Agric. (Entomology), Ain Shams Univ. 1980M.Sc. Agric. (Entomology), Ain Shams Univ. 1986.

This thesis for Ph D degree has been approved by:

Prof. Dr. Mohamed Aly Elbanby

Prof. of Economic Entomology, Faculty of Agriculture, Ain Shams University

(supervisor)

Date of examination: 1 / / / 1992

COMPARATIVE STUDIES ON THE CARNIOLAN HONEY BEE RACE AND ITS CROSSES

BY

Adel Mohamed Mahmoud Elbassiouny

B.Sc. Entomology, Ain Shams Univ., 1980

M.Sc. Entomology, Ain Shams Univ., 1986

Under the supervision of:

Prof. Dr. M.A. Elbanby

Prof. of Economic Entomology, Ain Shams Univ.

Dr. M.E. El-sherif

Ass. Prof. of Economic Entomolgy, Ain Shams Univ.

ABSTRACT

The experiments on the Carniolan honey bee were conducted at Institut für Bienenkunde, Frankfurt University, Germany, during 1989-1990. The first experiment was to study the biological route of sperm from testes (in drones) until egg fertilization (in queen).

The second experiment was to estimate the heritabilities and genetic correlations for some morphometric and biologic characters by adopting the half-sib analysis.

1- The biological route of sperm from testes until egg fertilization

The spermatozoa begin to accumulate in the drone's seminal vesicles 3 days after emergence and increase by ageing to average 10.373 million when 12-15 days old. The

drone ejaculates about one microleter of semen containing only about 7.930 million sperm. The majority of spermatozoa are lost after being inseminated in the queen as only 5.215 million sperm are counted in the spermatheca after insemination with 8 μl of semen. However, the semen of multiple matings mix randomly both in the oviduct and in the spermatheca. An average of 23.77 sperm are used per egg for fertilization at the start of oviposition. During the most active period of egg laying it is expected that only one or two sperm fertilize the egg as it is estimated that 1884.6 sperm deplete daily from the spermatheca.

2- Heritabilities and genetic correlations

The heritability estimates were high and considerable only for the ovariole numbers in queens and in most morphometrics of workers; proboscis, fore-wing width, wing hooks, hind leg parts and 1st wax mirror length.

All hind leg parts (femur, tibia and basitarsus length) are genetically correlated with each other and with the proboscis length. So, selection for any of these organs may lead to improvement in the others. Selection for the proboscis length may lead also to amelioration of fore-wing width and wax-mirror width.

ACKNOWLEDGEMENT

I would like to express the deepest thanks and gratitude to professor Dr. M.A. Elbanby professor of Economic Entomology, Faculty of Agriculture, Ain Shams University for suggesting the current study, continuous guidance and supervision and keen revision of this thesis' manuscript.

Thanks also are due to Dr. M.E. El-sherif Assistant professor of Economic Entomology at the same college for his supervision and advice.

The effort of Dr. Karima Shaheen (at the Animal Husbandry Dept.) in computerizing the genetic data is deeply appreciated.

I am also thankful to Prof. Dr. N. Koeniger professor of Zoology and director of Institut für Bienenkunde at Frankfurt University, Germany, for his continuous guidance, constructive suggestions and kind support.

The help of all members of the Institut für Bienenkunde is also appreciated specially to Dr. Gudrun koeniger, Dr. S.Fuchs, Mrs. M. Kühnert, Mrs. C. Rau and Mr. W. Würkner.

The support of the DAAD in financing my study leave in Germany will not be forgotten.

CONTENTS

	PAGE
LIST OF TABLES	•
LIST OF FIGURES	
1- INTRODUCTION	
2- REVIEW OF LITERATURE	
3- MATERIALS AND METHODS	
3-1- The biological route of sperm in honey bee Apis	. 39
mellifera	
3.1.1- Counts of spermatozoa in drone's seminal vesicles	
	. 39
3.1.2- Counts of spermatozoa in the ejaculated semen,	
compared to that in vesiculae seminales	
3.1.3- Concentration of spermatozoa in the ejaculated semen	ı
(No. of sperm/1 μ 1)	41
3.1.4- Placement of semen mixing in queen's oviducts or	
spermatheca after multiple directly successive or	
delayed matings	43
3.1.5- Spermatozoa counts in queen's spermatheca after	
insemination with different quantities of semen	44
3.1.6- Number of spermatozoa used for egg fertilization	
3.2- Heritabilities and genetic correlations	
3.2.1- Methodology (Experimental design)	
3.2.2- Technique	
3.2.2.1- Morphometric characters	50
3.2.2.2- Worker longevity (length of life)	51

3.2.2.3- Worker body weight	51
3.2.2.4~ Queen ovariole numbers	
4- RESULTS AND DISCUSSION	
4.1- Route of spermatozoa in honey bee drones	
4.1.1- Accumulation of spermatozoa in seminal vesicles	52
4.1.2- Number of spermatozoa produced by mature carnica	
drones in ejaculated semen as compared to those in	
seminal vesicles	54
4.1.3- Sperm concentration in the ejaculated semen	59
4.1.4- Placement of sperm mixing in queen's oviducts or	
spermatheca after multiple directly successive or	
delayed matings	59
4.1.5- Spermatozoa counts in queen's spermatheca after	
insemination with different quantities of semen	65
4.1.6- Number of spermatozoa used for egg fertilization	68
4.2- Heritability and Genetic correlations	70
4.2.1- Pleiotropism and Heritabilities	
4.2.1.1- Morphometric characters	72
4.2.1.2- Biologic characters	
a- Longevity of workers	
b- Worker body weight	
c- Queen's ovariole number	
4.2.2- Phenotypic, genetic and environmental correlation	
4.2.2.1- Phenotypic correlations	
1.2.2.2- Environmental correlations	
1.2.2.3- Genetic correlations	

		Page
5 –	SUMMARY AND CONCLUSIONS	107
6-	REFERENCES	112
7-	APPENDIX	121
	ARABIC SHMMADY	

LIST OF TABLES

No	•	Dage
1-	Average numbers of spermatozoa in seminal vesicles	Page
	of Carniolan drones at different ages when living	
	free (but prevented from flight) in a queenright	
	colony	53
2-		
	collected by two different techniques and in seminal	
	vesicles of individual free flying mature carnica	
	drones	55
3-	Numbers of spermatozoa in 1 μ l semen ejected by	
	individual free flying mature carnica	
	drones	60
4-	Average worker offspring counts of triple-mutant	
	queens after three directly successive inseminations	
	with semen of three genotypically different drones	
	(1 μ l each)	61
5 -	Average worker offspring counts of triple-mutant	
	queens after insemination with semen of three	
	genotypically different drones (1 μ l each) on three	
	subsequent days	62
5-	Average numbers of spermatozoa in carnica queen's	
	spermathecae after insemination with different	
	quantities of semen	66

7-	Numbers of spermatozoa required for obtaining one	
	worker brood	69
8-		0,5
	estimates for proboscis length, either in all half-	
	sibs or after excluding either the wild or the	
	triple-mutant group	73
9-		/3
	estimates for fore-wing length, either in all half-	
	sibs or after excluding either the wild or the	
	triple-mutant group	75
10-	Means, statistical analysis and heritability	
	estimates for fore-wing width, either in all half-	
	sibs or after excluding either the wild or the	
	triple-mutant group	76
11-	Means, statistical analysis and heritability estimates	, 0
	for number of wing hooks either in all half-sibs or	
	after excluding either the wild or the triple-mutant	
	group	77
12-	Means, statistical analysis and heritability estimates	
	for hind-femur length, either in all half-sibs or after	
	excluding either the wild or the triple-mutant	
	group	78
	Means, statistical analysis and heritability estimates	. 0
	for hind-tibia length, either in all half-sibs or after	
	excluding either the wild or the triple-mutant	
	group	70

		Page
14-	Means, statistical analysis and heritability estimates	
	for hind-basitrasus length, either in all half-sibs or	
	after excluding either the wild or the triple-mutant	
	group	80
15-	Means, statistical analysis and heritability estimates	
	for hind-absitrasus width, either in all half-sibs or	
	after excluding either the wild or the triple-mutant	
	group	81
16-	Means, statistical analysis and heritability	
	estimates for $1^{\underline{st}}$ wax mirror length, either in all	
	half-sbis or after excluding either the wild or the	
	triple-mutant group	82
17-	Means, statistical analysis and heritability	
	estimates for $1^{\underline{st}}$ wax mirror width, either in all	
	half-sbis or after excluding either the wild or the	
	triple-mutant group	83
18-	Means, statistical analysis and heritability	
	estimates for worker longevities, either in all	
	half-sbis or after excluding either the wild or the	
	triple-mutant group	90
19-	Means, statistical analysis and heritability	
	estimates for worker body weight, either in all	
	half-sbis or after excluding either the wild or the	
	triple-mutant group	Ω.4

		Page
20-	Means, statistical analysis and heritability	
	estimates for number of queen ovariloes, either in	
	all half-sbis or after excluding either the wild	
	or the triple-mutant group	97
21-	Phenotypic correlations between pairs of different	
	morphometric characters either in all half-sibs or	
	after excluding the triple-mutant group	101
22-	Environmental correlations between pairs of different	
	morphometric characters either in all half-sibs or	
	after excluding the triple-mutant group	103
23-	Genetic correlations between pairs of different	
	morphometric characters either in all half-sibs or	
	after excluding the triple-mutant group	104

Appendix no.		Page
1-	spermatozoa counts in seminal vesicles of Carniolan	
	drones at different ages when living free (but	
	prevented from flight) in a queenright	
	colony	121
2-	Analysis of variance between the sperm counts at	
	different ages of carnica drones	123
3-	Numbers of spermatozoa in ejected semen collected by	
	two different techniques and in seminal vesicles of	
	individual free flying mature carnica drones	124
4 –	Worker offspring counts of triple-mutant queens after	
	three directly successive inseminations with semen of	
	three genotypically different drones	
	(1 μ l each)	125
5-	Analysis of variance between the worker offspring	
	resulting from the three directly successive	
	inseminations	126
6-	t test for worker offspring indicating any probability	
	of difference in sperm vitality and viability of the	
	two types of mutant drones in the same	
	insemination	127
7-	t test for worker offspring indicating any probability	
	of difference in sperm vitality and viability of the	
	two type of mutant drones in the first and last	
	inseminations	128

		Page
8-	t test for workers offspring indicating any	
	probability of difference in sperm vitality and	
	viability in each group of mutant-type drones due to	
	order of insemination	129
9-	t test for worker offspring indicating any probability	
	of difference in sperm vitality and viability of the	
	two groups of mutant-type drones regardless of	
	insemination order	130
10-	Worker offspring counts of triple-mutant queens after	
	insemination with semen of three genotypically	
	different drones (1 μ each) on three subsequent	
	days	131
11-	Analysis of variance between the worker offspring	
	resulting from the three inseminations on three	
	subsequent days	132
12-	Numbers of spermatozoa in carnica queen's spermatheca	
	due to inseminations with different quantities of	
	semen	133
13-	Relathionship between sealed brood and number of	
	spermatozoa remaining in spermatheca	134
14-	Meansts.e. for proboscis length (mm.) in worker half-	
	sibs of the following genotypes	135
15-	Mean deviations in proboscis length from the wild	
	type in the mutant-carrying half-sibs	226