BIOCHEMICAL STUDIES ON AZOSPIRILLUM BACTERIA IN THE RHIZOSPHERE OF SOME FIELD CROP PLANTS

BY

MEDHAT YAMANI ABOU-ZEID

A thesis submitted in partial, fulfilment

of

the requirement for the degree of

MASTER OF SCIENCE

44828

IN

AGRIC. BIOCHEMISTRY

Department of Biochemistry
Faculty of Agriculture
Ain Shams University

1993

APPROVAL SHEET

BIOCHEMICAL STUDIES ON AZOSPIRILLUM BACTERIA IN THE RHIZOSPHERE OF SOME FIELD CROP PLANTS

BY

MEDHAT YAMANI ABOU-ZEID

B.Sc. Agric. (Biochemistry), Fac. Agric. Ain Shams University, 1981.

5, 79999 This thesis for M.Sc. degree has been

Prof. of Biochem. Agric. Res. Center.

Associated Prof. of Biochem. Ain Shams Univ.

Prof. Dr. K.R.F. Hussein K. R. F. Hussein Prof. of Biochem. Ain Shams Univ.

Date of examination: \(\to / \) / 1993.

BIOCHEMICAL STUDIES ON AZOSPIRILLUM BACTERIA IN THE RHIZOSPHERE OF SOME FIELD CROP PLANTS

BY

Medhat Yamani Abou-Zeid

B.Sc. Agric. (Agricultural Biochemistry)
Fac. Agric. Ain Shams Univ., 1981

Under the supervision of: Prof. Dr. K.R.F. Hussein.
Prof. of Biochemistry.

Prof. Dr. E.A. Zaher. Prof. of Biochemistry.

Dr. M.N.A. Omar.
Senior Researcher of Agric.
Microbiol. Soil and Water
Research Instit., A.R.C.

ABSTRACT

Two field experiments were conducted at Sakha Agriculture Research Station, on rice (var. Giza 172) and two wheat varieties (Sakha 8 & 69) to investigation the effect of inoculation of these cereals with nitrogen fixing bacteria namely Azospirillum brasilense (strain Sp7 & Sp245) as a biofertilizer under different N-fertilizer levels, on grain yield and chemical constituents of grain like carbohydrates contents, protein fractions using different solvents and electrophoretic patterns (SDS-PAGE).

Irrispective of N-fertilization, grain yield non-significantly increases were found due to inoculation of wheat var. Sakha 69 with strain Sp7 or Sp245, these increases scored 13.14 % and 27.04 % over the control, respectively. Whereas decreases in grain yield were occured upon biofertilization of both of rice and wheat var. Sakha 8.

The inoculation increased, significantly, crude protein percentage of two wheat varieties used and highly significant for rice. These increases represented 6.50 %, 3.38 % and 14.50 % for wheat upon inoculation with Sp245 and Sp7 and for rice with Sp7, respectively.

The biofertilization with strain Sp245 increased, non-significantly the gliadins content (25.36 %) for wheat var. Sakha 69, and the inoculation with the same strain increased glutenins content by 16.22 % of grain in var. Sakha 8 over the control.

Total soluble carbohydrates percentage decreased due to inoculation of two wheat varieties used, whereas increased for rice grain non-significantly, especially without N-fertilization. It is clear that the biofertilization compensed the negative effect of the N-fertilization in rice grain.

Separation of grain total protein of wheat var. Sakha 8 using SDS-PAGE showed that the inoculation gave a new hand of 42.6 kd. Also, inocilation with Sp245 led to new two bands of about 62.0 and 72.0 kd. Both of two fertilization types gave some more intensity bands than the control in the electrophoregrams of rice grain total protein. Gliadins electrophoregrams for two wheat varieties used were unaffected by inoculation or/and N-fertilization. The data of glutenins subunits protein of wheat grain var. Sakha 69 showed that the inoculation gave less intensity bands. In var. Sakha 8, inoculation with strain Sp245 at 30 kg N/Fed, also, applying 60 kg N/Fed led to most of bands density than control.

ACKNOWLEDGEMENT

The auther is deeply grateful and sincerely appreciated to Prof. Dr. K.R.F. Hussein, Prof. of Biochemistry and Prof. Dr. E.A. Zaher, Prof. of Biochemistry, Fac. of Agric., Ain Shams Univ.. for suggesting the probles, supervision and helpful guidance during the study.

The writer is deeply indebted to Dr. M.N.A. Omar. Senior Researcher, Dept. of Microbiol.. Soil and Water Res. Instit.. A.R.C., for supervision and help during the study.

A special word of thank due to all members of the unit of Bio-fertilizers. Microbiol. Dept., Soil and Water Res. Instit., A.R.C., for their great help and use of all facilities.

TABLE OF CONTENT

			Page
1 .]	INTRODU	CTION	
2.	REVIEW (OF LITERATURE	
	2.1	Chemical composition of wheat and rice grain	3
	2.1.1	Proteins of rice grain	3
	A -	Wheat proteins	4
	B-	Rice proteins	6
	C-	Electrophoresis of wheat and rice proteins	
	2.1.2	Carbohydrates	
	A-	Wheat carbohydrates	14
	В-	Rice carbohydrates	17
	2.1.3	Effect of nitrogen fertilizer on yield and	
		chemical composition of wheat and rice	
	A-	Wheat	
	B	Rice	24
	2.2	Biological fixation of atmospheric	
		nitrogen by fixing bacteria	
	2.3	Plant-soil-microorganisms interaction	
	2.3.1	Rhizosphere system	27
	2.3.2	The genus Azospirillum and Azospirillum-	
		plant interaction	
	2.3.3		
	7/ —	Nitrogen fixation	31

B-	Production of plant growth regulators33
C-	Nutrients uptake
2.3.4	Effect of inoculation with Azospirillum37
A-	The effect on some field crop plants38
В-	The effect on wheat40
C-	The effect on rice41
3. MATERIA	ALS AND METHODS
3.1	Experiments44
3.1.1	Soil used44
3.1.2	Seeds used44
3.1.3	Bacterial strains used45
3.1.4	Prepration of Azospírillum inoculant45
3.1.5	Inoculation of seeds45
A-	Rice inoculation45
B-	Wheat inoculation46
3.1.6	Media used46
3.1.7	The mineral fertilizers used47
A-	Rice mineral fertilizers47
B-	Wheat mineral fertilizers48
3.1.8	Experimental design48
A-	Rice design48
B-	Wheat design49
3.1.9	Statistical analysis50
3.2	Chemical analysis50
3.2.1	Mositure content50

	3.2.2	pH value50
	3.2.3	Total nitrogen50
	3.2.4	Total protein51
	3.2.5	Fractionation of meal protein51
	3.2.6	Determination of total soluble carbohydrates52
	3.2.7	Extraction and determination of
		total soluble sugars53
	A	Determination of reducing sugars53
	B-	Determination of non-reducing sugars53
	3.2.8	Electrophoresis of proteins53
	DEOU T	O AND DICOHOCION
4.	RESULT	S AND DISCUSSION
	4.1	Wheat and rice yield and protein fractions
		as influenced by N-fertilization and
		biofertilization59
	4.1.1	Wheat protein fractions60
	4.1.2	Wheat yield parameters70
	4.1.3	Rice protein fractions82
	4.1.4	Rice yield parameters85
	4.2	Wheat and rice cebohydrates as inlfuenced
		by N-fertilization and biofertilization91
	4.2.1	Wheat carbohydrates91
	4.2.2	Rice carbohydrates103
	4.3	Sodium dodecyle sulphate-poly-acrylamide gel
		electrophoresis (SDS-PAGE) of wheat and rice
		grain proteins108

4.3.1	SDS-PAGE of the total proteins		
	of wheat and rice grain109		
4.3.2	SDS-PAGE of ethanol soluble protein fractions115		
4.3.3	SDS-PAGE of alkali-soluble protein		
	fractions (glutenins)116		
4.4	General conclusion123		
5. SUMMARY			
6. REFERENCES			
7 ARABIC SUMMARY			

LIST OF TABLES

ble No. Page	
1 Proximate analysis of some cereal grains	
(% dry weight)3	
2 The carbohydrate contents of various	
wheat grain (g/100g)15	
3 Physical and chemical properties of the	
soil used44	
4 Effect of inoculation with <u>Azospirillum brasilense</u>	
(Sp7 & Sp245) in combination with three levels of	
nitrogen fertilizer on albumins content (g %)	
extracted from wheat grain (varieties: Sakha 8 &	
Sakha 69)61	
5 Effect of inoculation with Azospirillum brasilense	
(Sp7 & Sp245) in combination with three levels of	
nitrogen fertilizer on globulins content (g %)	
extracted from wheat grain (varieties: Sakha 8 &	
Sakha 69)62	
6 Effect of inoculation with Azospirillum brasilense	
(Sp7 & Sp245) in combination with three levels of	
nitrogen fertilizer on gliadins content (g %)	
extracted from wheat grain (varieties: Sakha 8 &	
Sakha 69)66	,

7	Effect of inoculation with Azospirillum brasilense
	(Sp7 & Sp245) in combination with three levels of
	nitrogen fertilizer on glutenins content (g %)
	extracted from wheat grain (varieties: Sakha 8 &
	Sakha 69)67
8	Effect of inoculation with Azospirillum brasilense
	(Sp7 & Sp245) in combination with three levels of
	nitrogen fertilizer on protein percentage of wheat
	grain (varieties: Sakha 8 & Sakha 69)71
9	Effect of inoculation with Azospirillum brasilense
	(Sp7 & Sp245) in combination with three levels of
	nitrogen fertilizer on grain yield (Ton/Fed) of
	wheat (varieties: Sakha 8 & Sakha 69)
10	Effect of inoculation with Azospirillum brasilense
	(Sp7 & Sp245) in combination with three levels of
	nitrogen fertilizer on nitrogen content (Kg/Fed)
	of wheat grain (varieties: Sakha 8 & Sakha 69)78
11	Effect of inoculation with Azospirillum brasilense
	(Sp7 & Sp245) in combination with three levels of
	nitrogen fertilizer on 1000-grain weight (g) of
	wheat (varieties: Sakha 8 & Sakha 69)81

12	Effect of inoculation with Azospirillum brasilense
	strain Sp 7 in combination with three levels of
	nitrogen fertilizer on protein fractions (albumins.
	glubulins, prolamins and glutenins) extracted from
	paddy rice grain (variety Giza 172)83
13	Effect of inoculation with Azospirillum brasilense
	strain Sp7 in combination with three levels of
	nitrogen fertilizer on grain yield (Ton/Fed). grain
	nitrogen content (Kg/Fed), protein percentage and
	weight of 1000-grain of rice (variety Giza 172)86
14	Effect of inoculation with Azospirillum brasilense
	(Sp7 & Sp245) in combination with three levels of
	nitrogen fertilizer on total soluble carbohydrates
	percentage of wheat grain (varieties Sakha 8 &
	Sakha 69) ⁹²
15	Effect of inoculation with Azospirillum brasilense
	(Sp7 & Sp245) in combination with three levels
	of nitrogen fertilizer on total soluble sugars
	percentage of wheat grain (varieties Sakha & &
	Sakha 69)
16	Effect of inoculation with Azospirillum brasilense
	(Sp7 & Sp245) in combination with three levels of
	nitrogen fertilizer on reducing sugars percentage
	of wheat grain (varieties Sakha 8 & Sakha 69)99

17	Effect of inoculation with Azospirillum brasilense
	(Sp7 & Sp245) in combination with three levels of
	nitrogen fertilizer on non-reducing sugars percen-
	tage of wheat grain (varieties Sakha 8 & Sakha 69)101
18	Effect of inoculation with Azospirillum brasilense
	strain Sp7 in combination with three levels of
	nitrogen fertilizer on total carbohydrate per-
	centage, total soluble sugars percentage, reducing
	percentage and non-reducing sugars percentage of
	paddy rice grain (variety Giza 172)104

LIST OF FIGURES

Figure	No.	Page
1	Effect of inoculation with Azospirillum brasilense	
	(Sp7 & Sp245) on protein fractions of wheat grain	
	(variety Sakha 8)	63
2	Effect of inoculation with Azospirillum brasilense	
	(Sp7 & Sp245) on protein fractions of wheat grain	
	(variety Sakha 69)	64
3	Effect of inoculation with Azospirillum brasilense	
	(Sp7 & Sp245) on protein percentage of wheat grain	
	(var. Sakha 8 & Sakha 69)	72
<u>á</u>	Effect of inoculation with Azospirillum brasilense	
	(Sp7 & Sp245) on grain yield (Ton/Fed) of wheat	
	grain (var. Sakha 8 & Sakha 69)	.76
5	Effect of inoculation with Azospirillum brasilense	
	(Sp7 & Sp245) on N-content (Kg/Fed) of wheat grain	
	yleld (var. Sakha 8 & Sakha 69)	.79
6	Effect of inoculation with Azospirillum brasilense	
	(Sp7) on protein fractions of rice grain (variety	
	Giza 172)	.84
7	Effect of inoculation with Azospirillum brasilense	
	(Sp7) on grain yield (Ton/Fed) and protein percen-	
	tage of rice grain (variety Giza 172)	. 87